

DISTRIBUTION: INITIATED BY:

www.directives.doe.gov Office of Environment, Health, Safety and Security

DOE G 414.1-4A

XX-XX-20XX

1-30-15 Draft

SOFTWARE QUALITY ASSURANCE GUIDE

for Use with

DOE O 414.1D, QUALITY ASSURANCE
[This Guide describes suggested nonmandatory approaches for meeting requirements. Guides

are not requirements documents and are not construed as requirements in any audit or appraisal

for compliance with the parent Policy, Order, Notice, or Manual.]

U.S. DEPARTMENT OF ENERGY

Washington, D.C.

NOT MEASUREMENT

SENSITIVE

DOE G 414.1-4A i (and ii)

DRAFT XX-XX-2015

i

FOREWORD

This Department of Energy (DOE) Guide is approved for use by all DOE organizations,

including the National Nuclear Security Administration (NNSA). The Guide was developed in

support of DOE Order (O) 414.1D, Quality Assurance, dated 4-25-2011 (Change Notice No.1,

dated May 2013). The Guide assists DOE and its contractors with information and guidance on

the quality assurance (QA) requirements of DOE O 414.1D as applied to software used in

nuclear and non-nuclear facilities.

This Guide (G) revises and supersedes DOE G 414.1-4, Safety Software Guide for Use with 10

CFR Part 830, Subpart A, Quality Assurance Requirements and DOE O 414.1C, Quality

Assurance, dated 6-17-2005. The revised Guide addresses a broader range of software (safety

and other software) compared to the 2005 version and also provides guidance on the application

of the ten QA criteria and on other special topics.

DOE Guides, part of the DOE Directives System, are issued to provide supplemental information

regarding DOE’s expectations for meeting requirements in rules, orders, notices, and regulatory

standards. Guides may also provide acceptable methods for implementing these requirements.

Guides are not substitutes for requirements, nor do they replace technical standards used to

describe established practices and procedures for implementing requirements. This Guide should

not be interpreted as requirements in any audits or appraisals for compliance with associated

rules or directives.

Comments, including recommendations for additions, modifications, or deletions, and other

pertinent information, should be sent to:

U.S. Department of Energy

Office of Quality Assurance (AU-33)

1000 Independence Avenue SW

Washington, DC 20585-0270

Phone: 301-903-6571

Fax: 301-903-6172

E-mail: subir.sen@hq.doe.gov

This Guide is available electronically on the DOE Directives System at the following address:

http://www.directives.doe.gov.

http://www.directives.doe.gov/

DOE G 414.1-4A iii

DRAFT XX-XX-2015

iii

CONTENTS

1. INTRODUCTION.. 1

1.1 PURPOSE ... 1

1.2 SCOPE .. 1

1.3 RESPONSIBILITY FOR SAFETY SOFTWARE ... 2

1.4 SOFTWARE QUALITY ASSURANCE REQUIREMENTS 2

1.5 SOFTWARE QUALITY ASSURANCE PROGRAM .. 3

2. SOFTWARE TYPES, CATEGORIES AND GRADING .. 4

2.1 SOFTWARE TYPES ... 4

2.1.1 Acquired Software .. 4

2.1.2 Configurable Software .. 4

2.1.3 Custom-Developed Software .. 4

2.2 SOFTWARE CATEGORIES AND GRADING .. 5

2.2.1 Safety Software ... 5

2.2.2 OSW .. 8

3. SOFTWARE MANAGEMENT ... 12

3.1 SAFETY SOFTWARE IDENTIFICATION AND MANAGEMENT 12

3.1.1 Role of the Design Authority in Safety Software Identification..................... 12

3.1.2. Safety Software Inventory Management .. 13

3.1.3 Management of Central Registry and Toolbox Codes 13

3.1.4 Legacy Software Management ... 14

3.2 SOFTWARE QUALITY ASSURANCE ELEMENTS ... 15

3.2.1 Use of National/International Consensus Standards 15

3.2.2 Continuous Improvement, Measurement, and Metrics 15

3.2.3 Software Reliability .. 16

3.2.4 System, Software and Risk ... 16

4. MANAGEMENT OF SOFTWARE BY TEN QA CRITERIA 18

5 SELECTING AND IMPLEMENTING SOFTWARE QUALITY ASSURANCE

WORK ACTIVITIES .. 19

5.1 OVERVIEW OF SOFTWARE-RELATED WORK ACTIVITIES........................... 19

5.2 DETAILED GUIDANCE ON SOFTWARE-RELATED WORK ACTIVITIES...... 20

5.2.1 Software Project Management and Quality Planning 21

iv DOE G 414.1-4A

 XX-XX-2015

5.2.2 Software Risk Management .. 23

5.2.3 Software Configuration Management ... 25

5.2.4 Procurement and Supplier Management ... 26

5.2.5 Software Requirements Identification and Management 27

5.2.6 Software Design and Implementation ... 29

5.2.7 Software Safety Analysis and Safety Design Methods................................... 33

5.2.8 Software Verification and Validation ... 35

5.2.9 Problem Reporting and Corrective Action ... 39

5.2.10 Training of Personnel in the Design, Development, Use, and Evaluation of

Software .. 40

6. SPECIAL TOPICS SUPPORTING SOFTWARE QUALITY ASSURANCE 41

6.1 MODEL DEVELOPMENT AND EVALUATION ... 41

6.1.1 Introduction ... 41

6.1.2 Model Development .. 42

6.1.3 Model Validation .. 43

6.1.4 Model Selection and Evaluation ... 47

6.2 DIGITAL SYSTEM SOFTWARE QUALITY ASSURANCE 49

6.2.1 Digital System Identification .. 49

6.2.2 SQA for Digital System Design .. 50

6.2.3 SQA for Digital System Acquisition .. 51

6.2.4 SQA for Digital System Use and Maintenance .. 52

6.3 COMMERCIAL GRADE DEDICATION OF COMPUTER PROGRAMS 52

6.3.1 Introduction ... 52

6.3.2 Approach ... 53

6.3.3 Dedication of Commercial Grade Computer Programs 53

6.3.4 Technical Evaluation and Acceptance .. 54

6.4 SOFTWARE SECURITY ASSURANCE ... 56

6.4.1 Introduction ... 56

6.4.2 Methodology for Designing and Implementing Secure Software 57

6.4.3 Testing and Analysis of Software for Security Vulnerabilities 59

6.4.4 Security Controls .. 60

DOE G 414.1-4A v (and vi)

DRAFT XX-XX-2015

v

7. ASSESSMENT ... 63

7.1 GENERAL .. 63

7.2 DOE AND CONTRACTOR ASSESSMENTS ... 63

APPENDIX A. MANAGEMENT OF SOFTWARE BY TEN QA CRITERIA A-1

APPENDIX B. PROCEDURE FOR ADDING, REVISING OR DELETING SOFTWARE

IN THE DOE SAFETY SOFTWARE CENTRAL REGISTRY B-1

APPENDIX C. SELECTING AND IMPLEMENTING APPLICABLE WORK

ACTIVITIES .. C-1

APPENDIX D. QUALITY ASSURANCE STANDARDS FOR SOFTWARE D-1

APPENDIX E. SAFETY SOFTWARE CRITERIA REVIEW AND APPROACH

DOCUMENT (CRAD)... E-1

APPENDIX F. ACRONYMS AND DEFINITIONS ... F-1

APPENDIX G. REFERENCES ... G-11

DOE G 414.1-4A 1

DRAFT XX-XX-2015

1

1. INTRODUCTION

1.1 PURPOSE

This Department of Energy (DOE) Guide provides information and acceptable methods for

implementing the software quality assurance (SQA) requirements of DOE Order (O) 414.1D,

Quality Assurance, dated 4-25 2011 (Change Notice No. 1, dated May 2013) for software

applications used in nuclear and non-nuclear facilities.

This Guide (G) revises and supersedes DOE G 414.1-4, Safety Software Guide for Use with 10

CFR Part 830, Subpart A, Quality Assurance Requirements and DOE O 414.1C, Quality

Assurance, dated 6-17-2005. The 2005 version of the Guide only addressed software used in

nuclear safety applications; the revised Guide also addresses other software (OSW) which has

safety (other than nuclear), mission critical, research applications or general applications.

Furthermore this revision significantly updates the previous version in the areas of software

category and grading determination and provides additional guidance on the management of

software by the ten quality assurance criteria as well as other special topics supporting software

quality assurance.

This Guide utilizes generally accepted SQA concepts and practices drawn from governmental

and industry consensus standards, and describes their application for software engineering

activities. Alternative methods to those described in this Guide may be used, provided they

comply with the requirements of DOE O 414.1D.

1.2 SCOPE

The scope of this Guide includes information and methods for the application of quality

assurance (QA) for software used in nuclear safety applications and OSW applications.

This guide provides:

 A high level description of (1) responsibilities for SQA, (2) DOE SQA requirements, and

(3) performance of SQA under a DOE approved QAP. (Sections 1.3, 1.4, and 1.5)

 Guidance on identification of software types, categories and grading levels (Section 2)

 General information and guidance on software management (Section 3)

 Overview of the management of software by ten QA criteria (Section 4)

 Guidance on selection and implementation of SQA work activities (Section 5)

 Guidance on specialized topics including (1) Model Development and Evaluation, (2)

Digital System Software Quality Assurance, (3) Commercial Grade Dedication of

Computer Programs, and (4) Software Security Assurance. (Section 6)

 Guidance on Assessments (Section 7)

2 DOE G 414.1-4A

 XX-XX-2015

The appendices provide supporting information and examples on:

 Management of Software by Ten QA Criteria (Appendix A)

 Procedures for Adding, Revising or Deleting Software in the DOE Safety Software Central

Registry (Appendix B)

 Selecting and Implementing Applicable Work activities (Appendix C)

 Quality Assurance Standards for Software in DOE Facilities(Appendix D)

 Safety Software Criteria Review and Approach Document (Appendix E)

 Acronyms and Definitions (Appendix F)

 References (Appendix G)

1.3 RESPONSIBILITY FOR SAFETY SOFTWARE

The Office of Environment, Health, Safety and Security (EHSS), previously Office of Health,

Safety and Security, has the lead responsibility for developing requirements and guidance

through the DOE Directives System for safety software per DOE O 414.1D.

The organizations using safety software should determine whether to qualify a software item for

safety applications (see Section 2.2.1.4). Organizations should also coordinate with the Office of

the Chief Information Officer regarding corporate SQA procedures. DOE line organizations are

responsible for providing direction and oversight of the contractor’s implementation of SQA

requirements.

1.4 SOFTWARE QUALITY ASSURANCE REQUIREMENTS

DOE O 414.1D requirements supplement the quality assurance program (QAP) requirements of

Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance (hereafter QA

Rule). The QA Rule establishes the “quality assurance requirements for contractors conducting

activities, including providing items or services that affect, or may affect, nuclear safety of DOE

nuclear facilities.” DOE O 414.1 D supplements the QA Rule by identifying software as an item

subject to the ten QA criteria in the QA Rule. In DOE O 414.1D, Requirements (paragraph 4. a.

(2)) and Attachment 1, Contractor Requirements Document (paragraph 1. b) require that all

software meet applicable QA requirements using a graded approach. Therefore DOE O 414.1D

applies to both safety software for nuclear facilities and OSW with safety (other than nuclear),

mission critical, research or general applications. Attachment 2 of DOE O 414.1D lists the ten

QA criteria as requirements to be implemented for all software using a graded approach. Section

4 and Appendix A of this Guide provide a discussion of these ten QA criteria as they apply to

software.

DOE G 414.1-4A 3

DRAFT XX-XX-2015

3

Organizations should also coordinate with the Office of the Chief Information Officer regarding

corporate SQA procedures. In particular DOE O 200.1A
1
 should be consulted regarding the

acquisition, use and management of software to meet program and mission goals.

1.5 SOFTWARE QUALITY ASSURANCE PROGRAM

All software-related activities should be performed under a DOE-approved QAP developed by

the contractor using a graded approach. The QAP should identify the applicable industry and

consensus software standards used as part of the SQA work activities.

The DOE O 414.1D defines “graded approach” as:

The process of ensuring that the levels of analyses, documentation, and actions used to comply

with requirements is commensurate with:

(1) The relative importance to safety, safeguards and security;

(2) The magnitude of any hazard involved;

(3) The life-cycle stage of a facility or item;

(4) The programmatic mission of a facility;

(5) The particular characteristic of a facility or item;

(6) The relative importance to radiological and nonradiological hazards; and

(7) Any other relevant factors.

Using the above criteria, the graded approach to QA for software should take into consideration

the following:

 Software’s intended function (e.g., safety, safeguards and security, basic facility

operations);

 Software category (e.g. monitoring and control, design analysis);

 Software type (e.g., acquired, custom-developed, configurable);

 Consequences of software failure on facility’s operation (e.g., life-safety, environmental

releases; mission failure);

 Complexity of the software; and

 Useful life of the software (e.g., one-time use).

1 DOE O 200.1A, Information Technology Management, dated 12-23-2008

4 DOE G 414.1-4A

 XX-XX-2015

2. SOFTWARE TYPES, CATEGORIES AND GRADING

This section provides guidance on classifying software by type and category and on grading

software for SQA applications. Classification determines which SQA requirements from DOE O

414.1D apply to and guide implementation of those requirements.

2.1 SOFTWARE TYPES

Software applications are classified as acquired, configurable, or custom-developed software

types. The following provides guidance to support the classification.

2.1.1 Acquired Software

Acquired software is generally supplied through basic procurements, two-party agreements, or

other contractual arrangements. Acquired software includes commercial off-the-shelf (COTS)

software, where (a) the software supplier does not advertise any willingness to modify the

software for a specific customer and (b) fitness for use has been demonstrated by a broad

spectrum of commercial users. Acquired software also includes government-furnished software

downloaded at no cost to the user (referred to as “freeware”), and software acquired from a

parent corporate entity or from an open source distributor.

Examples of acquired software include software used for design analysis, safety and hazard

analysis, modeling of physical phenomena and engineering, inventory management, project

management, corrective action tracking, and design analysis software used by design services

contractors. Acquired software also includes operating systems, compilers, software

development tools and firmware where software is embedded in the hardware and cannot be

modified by the end user after receipt.

2.1.2 Configurable Software

Configurable software is commercially available software or firmware that allows the user to

modify the structure and functioning of the software in a limited way. Examples of configurable

software include programmable logic controllers (PLC), intelligent digital devices, spreadsheets,

databases, and commercial calculational software such as Statistica, MathCad, Mathematica, and

Matlab. Configurable software also includes utility calculation software used to create user

developed algorithms, data structures, or other simple software products using commercial

software.

2.1.3 Custom-Developed Software

Custom-developed software is a one-of-a-kind, unique software application built specifically for

DOE or its contractors. Custom software may be developed by DOE, by an existing DOE

contractor, or by a qualified software development company selected via the procurement

DOE G 414.1-4A 5

DRAFT XX-XX-2015

5

process. Examples of custom-developed software include custom material inventory and

tracking software, custom data management software, custom accident consequence analysis

software, custom control system software, custom operations software, and custom research

software.

2.2 SOFTWARE CATEGORIES AND GRADING

There are two software categories: (1) safety software and (2) OSW. Each category has three

subcategories.

Safety software is defined by DOE O 414.1D and includes:

 Safety System Software (SSS);

 Safety and Hazard Analysis and Design Software (SHADS); and

 Safety Management and Administrative Controls Software (SMACS).

OSW includes:

 Safety-Affecting Software (SAS);

 Critical Software (CS); and

 General Software (GS).

2.2.1 Safety Software

2.2.1.1 Safety System Software

DOE O 414.1D defines SSS as:

Software for a nuclear facility that performs a safety function as part of an SSC and is cited

in either (a) a DOE-approved documented safety analysis; or, (b) an approved hazard

analysis per DOE P 450.4, Safety Management System Policy, dated 10-15-96 (or latest

version)
2
 and 48 CFR 970-5223-1.

The use of the term “nuclear facility” includes both reactor and nonreactor nuclear facilities (i.e.,

Hazard Category
3
 1, 2, 3 and below Hazard Category 3). Safety analysis for nuclear facilities

classified as Hazard Category 1, 2, and 3 are provided in a Documented Safety Analysis (DSA).

Because a DSA is not developed for below Hazard Category 3 facilities (i.e., radiological

facilities), the hazard analysis and hazard controls for such facilities are provided in a

documented safety management system per DOE P 450.4A and the DEAR
4
 clause.

2 DOE P 450.4 is canceled and replaced by DOE P 450.4A, Integrated Safety Management Policy, dated 4-25-2011
3 DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques For Compliance With DOE Order

5480.23, Nuclear Safety Analysis Reports December 1992, (Change Notice No. 1, dated September 1997)
4 Department of Energy Acquisition Regulation, 48 CFR 970-5223-1

6 DOE G 414.1-4A

 XX-XX-2015

When systems depend on software to implement a safety function identified in the DSA,

technical safety requirements (TSR), or other formal hazard analysis, that software becomes

safety software. It is possible that the software is not explicitly identified in the DSA, TSR or

other hazard analysis documents, but the safety function performed by the software would be

identified.

DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis,

classify safety-related structures, systems, and components (SSCs) as safety class (SC) or as

safety significant (SS) as defined in 10 CFR 830.3. For SSS purposes, a “safety function” is

interpreted as defined in a DSA that states the reasons for designating the SSC as SC or SS, or

states the rationale for designation as a specific administrative control (SAC), and describes its

preventive or mitigative safety function(s) as determined in the hazard and accident analysis.
 5

2.2.1.2 Safety and Hazard Analysis Software and Design Software

DOE O 414.1D defines SHADS as:

Software that is used to classify, design, or analyze nuclear facilities. This software is not

part of an SSC but helps to ensure the proper accident or hazards analysis of nuclear

facilities or an SSC that performs a safety function.

Safety and Hazard Analysis Software:
6
 This category includes software relied upon to select

hazard controls and physical features that are credited to prevent or mitigate a hazard to the

workers, collocated workers, the public and the environment. Software used to select or design

controls for fire protection, nuclear criticality, or natural phenomena hazards for nuclear facilities

are included in this safety software definition.

Design Software:
 4
 The software that meets this definition is relied upon to ensure that the

nuclear safety design criteria are met. DOE O 420.1C, Facility Safety, Attachment 2, Chapter I,

“Nuclear Safety Design Criteria” describes some of the analyses to be performed during design

and construction. This software generally does not include computer-aided design (CAD)

software, or software that supports standard facility engineering activities.

2.2.1.3 Safety Management and Administrative Controls Software

DOE O 414.1D defines SMACS as:

Software that performs a hazard control function in support of nuclear facility or

radiological safety management programs or technical safety requirements or other software

5 Adopted in part from Software Quality Assurance Support Group (SQASG) Technical Report (TP)-07-01 Rev 2,

DOE Safety Software Examples, Section 2.1
6 Adopted in part from SQASG TP-07-01, Rev 2, DOE Safety Software Examples, Section 3.1

DOE G 414.1-4A 7

DRAFT XX-XX-2015

7

that performs a control function necessary to provide adequate protection from nuclear

facility or radiological hazards. This software supports eliminating, limiting, or mitigating

nuclear hazards to workers, the public, or the environment as addressed in 10 C.F.R. Parts

830 and 835, the DEAR Integrated Safety Management System clause, and 48 CFR 970-

5223-1.

This software does not directly affect an SC/SS SSC safety function. Safety management

programs and administrative controls relied upon for safety are identified in the facility DSA and

TSRs. (See DOE O 420.1C and DOE-STD-3009-2014 for additional information on the types of

hazard controls that would meet this definition.

These hazard control functions for non-SC/SS SSCs may be identified in the DSA for safety-

related equipment in accordance with the safety management programs. The DSA hazard

evaluation process may identify preventive or mitigative controls that do not rise to the level of

SC or SS but still enhance the safety of the facility. These controls are identified in the hazard

evaluation table, but are not explicitly credited with a SC/SS designation as identified in the

DSA. Such controls are maintained in accordance with safety management programs.

Examples of SMACS include monitoring software that (a) assists operators in deciding what

actions to take or not take for safe operation or (b) provides operators with visual or audio alerts

of process upsets or an actual or potential unsafe condition; or (c) identification of actions, that if

not taken, could cause criticality limits to be exceeded For software to be classified as SMACS,

the software hazard control function should be identified in the DSA or TSR or radiological

facility safety management system.

2.2.1.4 Safety Software Determination

The determination of what constitutes safety software should be made based on its application

and the safety consequences of its postulated failure to perform its intended function. The

process for identifying safety software is tied to the formal safety analysis and hazard assessment

process for the nuclear facility. Since software can have both safety and non-safety applications,

a determination should be made whether the non-safety application could adversely affect the

safety application. This determination is also important where software is used to monitor

radiological inventory as a means of categorizing a nuclear facility.

2.2.1.5 Safety Software Quality Assurance Grading

DOE O 414.1D requires sites to develop and implement safety software grading levels approved

by DOE. Software must be appropriately categorized as safety software prior to addressing

safety software grading levels.

8 DOE G 414.1-4A

 XX-XX-2015

In Table 2.2-1, three grading levels are suggested for safety software. Other grading levels may

be used. The grading levels are hierarchical from most important to least important in terms of

the potential consequences of failure. Safety software that does not meet the criteria for either

level A or level B is automatically categorized as level C.

Table 2.2-1: Safety Software Grading Levels

Grading Level Description Grading Levels

Safety software must execute correctly or the intended use of the system/software will not be

realized, causing one or more of the following grave consequences:

 Adversely affect the safety function of a SC or SS SSC cited in a DOE-approved DSA;

 Compromise a limiting condition for operation or limiting control settings of a SC or SS

system, as stated in a TSR;

 Adversely affect the safety or hazard control function of other systems, such as toxic or

chemical protection systems, cited in either (a) a DOE-approved DSA or (b) a radiological

facility Safety Management System per DOE P 450.4A, and the DEAR clause (48 CFR

970.5223-1);

 Result in non-conservative hazard analysis, accident analysis or hazard control selection per

10 CFR Part 830 or DOE-STD-3009-2014; or

 Adversely affect the safety function of a SAC, or the supporting SSCs to implement a SAC,

cited in a DOE-approved DSA.

A

Safety software must execute correctly or the intended use of the system/software will not be

realized, causing one or more of the following serious consequences:

 Adversely affect the hazard control function of defense-in-depth SSCs identified in a safety

management program, in a DOE-approved DSA; or

 Result in inaccurate or non-conservative design and analysis of SC or SS SSCs cited in a

DOE-approved DSA; or

 Result in an incorrect analysis, monitoring, alarming, or recording of hazardous exposures to

workers or the public.

B

Safety software must execute correctly or an intended hazard control function will not be

realized, causing minor consequences. This grading level will apply to all safety software not

graded as level A or B.

C

2.2.2 OSW

This Guide introduces the term OSW to include software not designated as safety software.

OSW includes software that is used for worker occupational safety and health, environmental

compliance and protection, emergency preparedness and response, safeguards and security,

mission-critical operations, project-critical activities, and research and development activities

that do not impact nuclear safety. OSW has to meet the applicable QA requirements in DOE O

414.1D, Attachment 2, using a graded approach.

DOE G 414.1-4A 9

DRAFT XX-XX-2015

9

2.2.2.1 Safety-Affecting Software (SAS)

SAS includes software that performs a hazard control function that does not meet the nuclear

safety software definitions in DOE O 414.1D. This software contributes to the control of

radiological, biological, chemical, and physical hazards defined by the site’s Integrated Safety

Management System (ISMS) hazard analysis process. Such software may be relied upon for the

control of hazardous chemicals, explosives, asphyxiants, high energy chemical reactions,

combustible gases, toxic materials, nerve agents or biological agents. SAS includes software

whose failure could have a high to very high (See Table 2.2-2, OSW Grading Levels) safety or

health consequence and therefore should be subjected to a high degree of SQA rigor.
 7

2.2.2.2 Critical Software (CS)

The term critical software is used in this Guide for software relied upon to keep a facility or

process operating as desired. Examples include software for environmental protection,

emergency preparedness and response, communication, accident mitigation and recovery,

regulatory compliance, hazardous inventory management, waste management, safeguards and

security, machine control or machine protection systems and some research and development

activities. This category involves software whose failure could pose a moderate to high

consequence but not a direct health or safety consequence. This category of software should be

subjected to a moderate to high (See Table 2.2-2, OSW Grading Levels) degree of SQA rigor.

2.2.2.3 General Software (GS)

The term general software is used in this Guide for software not falling into any of the software

subcategories described above. Failure of this software would be of low (See Table 2.2-2, OSW

Grading Levels) consequence, justifying a lower degree of SQA rigor.

2.2.2.4 OSW Determination

The determination of what constitutes OSW should be made by the organization using the

software. When identifying SAS, consideration should be given to the provisions of 48 CFR

970.5223-1, Integration of Environment, Safety, and Health into Work Planning and Execution,

and 10 CFR Part 851, Worker Safety and Health Program, which respectively establish

requirements for the integration of environment, safety and health program principles into work

planning and execution and the identification of workplace hazards and accompanying hazard

analyses.

7 Rigor, as used in this Guide, refers to the level of detail and thoroughness in the analysis, documentation and action

used to satisfy a requirement.

10 DOE G 414.1-4A

 XX-XX-2015

2.2.2.5 Quality Assurance Grading of OSW

Attachment 1 of DOE O 414.1D requires that a contractor apply the general QA principles of the

DOE O 414.1D, Attachment 2 to “all software”. This Guide suggests the use of four grading

levels for OSW, though other approaches and levels may be used. The grading levels are

hierarchical from most important to least important in terms of the potential consequences of

failure. In terms of risk, the grading levels represent the relative risk associated with the failure

of the software. The graded approach for OSW should provide that software with a higher risk is

subjected to more rigorous SQA than software associated with moderate or low risk. The graded

approach should be documented.

Table 2.2-2 on the next page provides an example of how OSW grading levels may be defined.

Guidance on how SQA work activities can be graded is found in Section 5.1 of this Guide. This

approach can be applied to an entire system or to individual software components.
8

8 IEEE Std 730-2014, IEEE Standard for Software Quality Assurance Processes, Annex I, Section 1.1.

DOE G 414.1-4A 11

DRAFT XX-XX-2015

11

Table 2.2-2 OSW Grading Levels

Grading Level Description Risk
Grading

Levels

OSW must execute correctly or the intended use of the system/software will not be

realized, causing one or more of the following consequences:

 Loss of human life or injuries resulting in long term disability;

 Disabling of a hazard control of radiological (not covered by 10 CFR Part 830),

biological, industrial, accelerator, laboratory, worker safety and health, or higher-level

hazards credited per DOE P 450.4A, Integrated Safety Management Policy, and the

DEAR clause;

 Significant offsite release to the environmental; or

 Serious impact on mission or performance objectives.

High to

Very High

4

OSW must execute correctly or the intended use of the system/software will not be

realized, causing one or more of the following consequences:

 Injuries resulting in short term disability;

 Reduction in the hazard control of radiological (not covered by 10 CFR Part 830),

biological and industrial hazards, accelerator, laboratory, worker safety and health, or

higher-level hazards identified by the site’s hazard categorization process;

 Incorrect analysis, monitoring, alarming, or recording of hazardous exposures to

workers or the public which may result in non-compliance;

 Significant onsite release to the environmental;

 Significant regulatory violation; or

 Moderate impact on mission or performance objectives.

Moderate

to High

3

OSW must execute correctly or the intended use of the system/software will not be

realized, causing one or more of the following consequences:

 Non-reportable injury;

 Release to the environment to a specific building or facility; or

 Low impact on mission or performance objectives.

Low to

Moderate

2

OSW must execute correctly or the intended use of the system/software will not be

realized, causing minor consequences. This grading level will apply to all OSW not

graded as level 4, 3 or 2.

Low 1

12 DOE G 414.1-4A

 XX-XX-2015

3. SOFTWARE MANAGEMENT

Section 3 provides guidance on several software management topics that supports SQA.

Section 3.1 provides guidance on safety software quality assurance (SSQA) including guidance

on two special features of safety software required by Appendix D of DOE O 414.1D followed

by information on the DOE Safety Software Central Registry and how it can be used to support

SSQA at DOE and legacy software applications.

Section 3.2 provides guidance on a several topics applicable to safety and “other” software

including:

 Use of National/International Consensus Standards

 Continuous Improvement, Measurement, and Metric

 Software Reliability

 System, Software and Risk

3.1 SAFETY SOFTWARE IDENTIFICATION AND MANAGEMENT

This section addresses the role of design authority in safety software identification and

management of the safety software inventory.

3.1.1 Role of the Design Authority in Safety Software Identification

DOE O 414.1D, Attachment 4, requires, as applicable, involvement of the facility design

authority in the identification of: requirements specification, acquisition, design, development,

verification, and validation including inspection and testing, configuration management,

maintenance, and retirement of safety software. How this involvement should occur is best

addressed in the description of the design authority’s software responsibilities. Involvement of

the design authority ensures that safety application of software is properly identified and

documented.

Design authority involvement may be further defined by the selected consensus standards in

accordance with the QAP. For example, it may require design authority approval of such

standards prior to implementation of the design basis, approval prior to performing tests
9
 that

require temporary changes to the approved configuration of a facility.
10

9 ASME NQA-1-2008/NQA-1a-2009, Part I, Requirement 3.
10 ASME NQA-1-2008/NQA-1a-2009, Part I, Requirement 11.

DOE G 414.1-4A 13

DRAFT XX-XX-2015

13

3.1.2. Safety Software Inventory Management

DOE O 414.1D Attachment 4, requires sites to identify, document, control and maintain a safety

software inventory. The intent of such inventory management is to provide a verifiable list of

safety software which should be useful in the event of potential software issues. Table 3.1-1

shows the content of the inventory required by DOE O 414.1D. In addition to the inventory’s

technical content requirements noted in Table 3.1-1, document control and records management

principles should be applied to software according to the provisions of the QAP.

Table 3.1-1 Safety Software Inventory Requirements Based on DOE O 414.1D

Requirement Reference and Title Requirement Summary

DOE O 414.1D, Attachment 4,

Section 2.a (2)

Identify, document, control and maintain safety software inventory. The

inventory entries must include at a minimum the following:

1. software description;

2. software name;

3. version identifier;

4. safety software designation (e.g., SSS, SHADS, SMACS);

5. grade level designation;

6. specific nuclear facility application used; and

7. responsible individual.

The following guidance is provided to further aid in development and maintenance of a software

inventory:

 An inventory is only as good as the information that it contains. The inventory should be

developed and maintained with quality processes to ensure information integrity and user

confidence.

 Various inventory formats may be used. A site inventory may be a single inventory or a

compilation of various inventories.

 The level of detail for the facility application should be sufficient to provide

identification and traceability to the specific facility application.

 Periodic assessments and audits of the inventory and its management system should

promote inventory integrity.

3.1.3 Management of Central Registry and Toolbox Codes

A toolbox code is a term used to identify software qualified to be listed in the DOE Safety

Software Central Registry (http://energy.gov/hss/services/assistance/quality-assurance/safety-

software-quality-assurance-central-registry) that is used primarily for DOE safety analyses.

These codes have widespread use throughout the DOE complex and are of appropriate

qualification for use at DOE sites. These codes, including specific versions, have been evaluated

http://energy.gov/hss/services/assistance/quality-assurance/safety-software-quality-assurance-central-registry
http://energy.gov/hss/services/assistance/quality-assurance/safety-software-quality-assurance-central-registry

14 DOE G 414.1-4A

 XX-XX-2015

using SQA criteria for safety software and are generally found to meet DOE SQA requirements.

The analysts using a specific approved version of these codes should not have to further justify

their qualification. However, other SQA requirements according to the established site

procedures should be followed.

The majority of the codes in the current Central Registry have been developed outside of DOE,

in the private sector or by other federal agencies). Access to the toolbox codes is subject to

agreements, conditions, and restrictions established by the code custodians or federal agencies.

Use of the Central Registry toolbox codes is not mandatory.

The Central Registry collection of safety software applications evolves over time. New versions

of software may be added to the Central Registry, while older versions may or may not be

removed. Some software may be retired and not allowed for use in DOE safety analysis.

Moreover, new software may be added through the formal “toolbox-equivalency” process,

having been recognized as meeting the equivalency criteria. Appendix B of this Guide addresses

the process for adding new software applications and versions to, and removal of retired software

from, the Central Registry.

3.1.4 Legacy Software Management

Legacy software is existing software that (a) has not been previously approved under a QA

program consistent with DOE O 414.1D and (b) has been identified as safety software to be

evaluated using the graded approach. In many cases, legacy software originally met DOE or

industry requirements, but the SQA practices for the software were not updated as the SQA

standards changed.

Legacy safety software should be identified and controlled prior to evaluation using the graded

approach framework in this Guide. The evaluation should be sufficient to adequately address the

correct operation of the safety software in the environment where it is being used. This

evaluation should include: (1) identification of the capabilities and limitations for intended use;

(2) any test plans and test cases to demonstrate those capabilities; and (3) instructions for use

within the limitations.
11

 One example of this evaluation is an a posteriori review.
12

 Future

modifications to existing safety software should meet all safety software work activities in DOE

O 414.1D that are associated with the modifications.

For other legacy software, a graded approach may be used to ensure that the quality attributes of

such software are consistent with its intended use.

11 ASME NQA-1-2008/NQA-1a-2009, op. cit., Part II, Subpart 2.7, Section 302
12 American National Standards Institute (ANSI)/American Nuclear Society (ANS) 10.4-1987 (R1998), Guidelines

for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear Industry,

ANS, 1998, Section 11.

DOE G 414.1-4A 15

DRAFT XX-XX-2015

15

3.2 SOFTWARE QUALITY ASSURANCE ELEMENTS

3.2.1 Use of National/International Consensus Standards

DOE O 414.1D requires the use of applicable national or international consensus standards to

develop and implement a QAP. Use of consensus standards facilitates a common software

quality engineering approach to developing or documenting software, based upon a consensus of

experts in the particular topic areas.

For Hazard Category 1, 2 and 3 nuclear facilities, DOE O 414.1D cites the American Society of

Mechanical Engineers (ASME) standard NQA-1-2008/NQA-1a-2009, Quality Assurance

Requirements for Nuclear Facilities, as an acceptable QA standard for acquiring, developing and

implementing safety software. Other national or international consensus standards of equivalent

quality may be used for safety software. Any alternate consensus standard used should be

specified in the site QAP, with DOE’s approval.

For safety software used in other facilities and activities, DOE O 414.1D cites examples of

appropriate standards that may be used including ASME NQA-1-2008/NQA-1a-2009 and ASME

NQA-1-2000. For OSW, any of the cited standards may be used to meet the ten DOE QA

criteria found in 10 CFR Part 830 Subpart A and DOE O 414.1D. DOE’s criteria are mapped to

the applicable ASME NQA-1 criteria in Subpart 4.5, Table 400, of ASME NQA-1. DOE O

414.1D requires that for safety software, additional standards are to be used if the selected QA

standard does not adequately cover specific work activities.

Appendix D of this Guide provides references to other standards which may be useful in

applying industry practices for SQA.

3.2.2 Continuous Improvement, Measurement, and Metrics

Measurements and metrics used throughout the software life-cycle should bolster confidence that

the software will function in a safe and reliable manner. Design, testing, and software reliability

measures are essential indicators to assess the safe and reliable performance of the software.

DOE O 414.1D, Criterion 3, Quality Improvement, specifies that processes should be established

and implemented to detect and prevent problems. Measurements and metrics can be leading

indicators for potential future problems, permitting preventive actions to be taken. For long term

avoidance of problems, continuous improvement methods should be implemented. Metrics

provide qualitative or quantitative indicators of improvements or lack thereof when a process or

work activity has been modified. Institute of Electrical and Electronic Engineers (IEEE)

16 DOE G 414.1-4A

 XX-XX-2015

Standards 982.1
13

and 982.26
11

 provide recommendations for what metrics to use and when their

application is most appropriate.

3.2.3 Software Reliability

Reliability should be designed into a system, just as quality should be built into the system. The

reliability of a system in which software is a subcomponent can be enhanced by the application

of two primary approaches to the software design process: (1) applying good engineering

practices based upon industry standards and best practices and (2) guiding design through the

results of an analysis of the software failure modes.
14

 Yet identifying and assessing the software

failure modes is not enough to make a system reliable; the information from the failure analysis

must be factored into the design.

Applying industry-accepted software engineering and software quality engineering practices is

generally the first approach to developing high-quality software systems. These practices can be

applied to software to improve the quality and add a level of assurance that the software will

perform its safety functions as intended. Attachment 4 of DOE O 414.1D specifies the SQA

work activities to be performed for safety software. However, these work activities can also be

applied to OSW. Many national and international consensus standards, such as ASME NQA-1-

2008 NQA-1a 2009, ANSI/ANS 10.4, and the IEEE software engineering series, provide

detailed guidance for performing these work activities.

Software process capability models, such as the Software Engineering Institute’s legacy

Software Capability Maturity Model (SW-CMM) and its more recent Capability Maturity Model

Integration (CMMI)
15

 are proven SQA tools. The CMMI offers two approaches, staged and

continuous. Organizations introducing a software process improvement program should

consider using these models.

3.2.4 System, Software and Risk

Software is typically a component of a system much in the same way hardware, data, and

procedures are system components and rarely function as an independent entity. Therefore, to

understand the risk associated with the use of software, the software function should be

considered a part of an overall system function. Managing the risk appropriately is the key to

managing a software system.

13 IEEE Std 982.1-1998, IEEE Standard Dictionary Of Measures To Produce Reliable Software, IEEE, 1998.
14 Identifying Software Failures Using FMEA and Fault Tree Analysis, Quality Progress, ASQ, September 2012
15 Capability Maturity Model Integration (CMMI) Product Team, Capability Maturity Model Integration, Version

1.1, CMMI for Systems Engineering, Software Engineering, Integrated Process Development, and Supplier

Sourcing (CMMI-SE/SW/IPPD/SS, V1.1), Continuous Representation, CMU/SEI-2002-TR-011, ESC-TR-2002-

011, Carnegie Mellon University (CMU) Software Engineering Institute (SEI), 2002.

DOE G 414.1-4A 17

DRAFT XX-XX-2015

17

The risks and consequences of software failures should be addressed in terms of the contribution

of a software failure to an overall system failure. Issues such as safeguards and security, training

of operational personnel, electromagnetic interference, human-factors, or system reliability have

the potential to contribute to the failure of a system. For example, if the security of the system

can be compromised, then the associated software within the system can also be compromised.

Controlling access to the system is vital to maintaining the integrity of the software, and

maintaining the confidentiality of the data that the software processes or produces. In another

example, considering PLCs or network software applications, electromagnetic interference could

offer potential risks for operation of the software system.

Once the software’s function within the overall system’s function is established, and the

consequences of the potential failures are identified, the appropriate software life-cycle work

practices can be identified to minimize the risk of software failure on the system. Rigor can then

be applied commensurate with the risk to be managed.

SQA cannot address the risks created by the failure of other system components (i.e., hardware,

data, human process errors, power system failures) but it can address the software “reaction” to

effects caused by these types of failures. SQA should not be isolated from system-level QA and

other system level activities. In many instances, hardware fail-safe methods are implemented to

mitigate risk of software failure as part of the SQA process. Additionally other interfaces such

as hardware and human interfaces with software should implement QA activities.

18 DOE G 414.1-4A

 XX-XX-2015

4. MANAGEMENT OF SOFTWARE BY TEN QA CRITERIA
16

DOE O 414.1D, Attachment 2, Quality Assurance Criteria, lists the ten QA criteria to be applied

to all software (safety software and OSW) using a graded approach. Therefore, a DOE

contractor’s QAP should address how each of the ten QA criteria should be applied to software.

The application of each of the ten QA criteria to discussed in Appendix A.

For safety software, DOE O 414.1D, Attachment 4 lists ten work activities that are to be

implemented, as applicable, for safety software quality assurance (SSQA) using the consensus

standard selected and grading levels established. The SSQA work activities are derived from

common industry practices and can be applied using the graded approach to all software. A

discussion of how the ten SSQA work activities could be applied to generally satisfy the ten QA

criteria for software acquisition, development, and implementation is provided in Appendix A.

16 This section on application of the ten QA criteria replaces a section on “Recommended Practices” in the previous

version of this Guide.

DOE G 414.1-4A 19

DRAFT XX-XX-2015

19

5 SELECTING AND IMPLEMENTING SOFTWARE QUALITY ASSURANCE

WORK ACTIVITIES

5.1 OVERVIEW OF SOFTWARE-RELATED WORK ACTIVITIES

This section provides an overview of how to implement the applicable SQA work activities

required by DOE O 414.1D. Attachment 4 of DOE O 414.1D requires contractors to use the

selected consensus standards and grading levels established and approved by DOE to implement

these SQA work activities:

(a) Software project management and quality planning;

(b) Software risk management;

(c) Software configuration management;

(d) Procurement and supplier management;

(e) Software requirements identification and management;

(f) Software design and implementation;

(g) Software safety analysis and safety design methods;

(h) Software verification and validation;

(i) Problem reporting and corrective action; and

(j) Training of personnel in the design, development, use, and evaluation of safety software.

A step-by-step approach is presented that may be used for selecting and implementing SQA

work activities. Although these work activities are specifically indicated in DOE O 414.1D to be

applicable for safety software, they also represent standard SQA activities generally followed in

the software industry. The approach may therefore be used for both safety software and OSW.

Other approaches may also be acceptable as long as they meet the DOE QA requirements.

Additional information, including several examples, is provided in Appendix C to further

illustrate the approach. Section 5.2 of this Guide provides additional guidance specific to each of

the ten SQA work activities.

As shown in Figure 5.1-1, SQA work activities follow a six-step process:

1. Identify applicable national or international consensus standards,

2. Determine the software category, subcategory, and grading level,

3. Determine applicability of the work activity,

4. Define the work activity using applicable consensus standard,

5. Grade by applying appropriate work activity requirements, and

6. Grade by applying appropriate rigor.

20 DOE G 414.1-4A

 XX-XX-2015

Figure 5.1-1 A Six-Step Approach to Selecting and Implementing Work Activities

The first step, identifying consensus standards, as required by DOE O 414.1D should be

addressed in the site’s QAP.

The second step is to determine the software category (i.e., safety or OSW), subcategory and

grading level.

The third step is to determine the applicability of the work activity. Identify and apply work

activities if they are: (a) within the scope of the software project, that is germane to the

software/work at hand, and (b) within the control of the project. If the work activities are not

within the scope or control of the software project, they are not applicable.

The fourth step is to define the work activities with the appropriate elements from the selected

consensus standards. This is done by specifying which elements, in whole or in part, of the

selected consensus standards describes the work activity.

The fifth step is to define appropriate requirements of the elements to be used for each work

activity based on the software category and grading level.

The final step is to grade by applying appropriate rigor.

For additional detail and examples regarding the steps in selecting and implementing applicable

work activities, see Appendix C.

5.2 DETAILED GUIDANCE ON SOFTWARE-RELATED WORK ACTIVITIES

The SQA work activities described in this section, which include tasks that are specific to

software life-cycle phases, provide the basis for planning, implementing, maintaining, and

operating software. Sections 5.2.1 through 5.2.10 describe the elements of these work activities.

Note that:

DOE G 414.1-4A 21

DRAFT XX-XX-2015

21

 These work activities describe the standard life-cycle process generally followed in

software development;

 Not all of these work activities are applicable for all types software;

 These work activities are applied in a graded manner depending on the software

categories/subcategories and grading level;
17

 Greater rigor is applied throughout where safety is involved; and

 These work activities are configured so that they address all ten QA criteria in Appendix

A.

5.2.1 Software Project Management and Quality Planning

5.2.1.1 Safety Software Project Management and Quality Planning

Software, project management starts at the system level. Software-specific tasks should be

identified and included either within the overall system planning or in separate software planning

documents. These tasks may be documented in a software project management plan (SPMP), a

software quality assurance plan (SQAP), a software development plan (SDP), or similar

documents. They also may be embedded in the overall system-level planning documents.

Typically, the SPMP, SQAP, or SDP are the controlling documents that define and guide the

processes necessary to satisfy project requirements, including the software quality requirements.

These plans are initiated at the beginning of the project life-cycle and are maintained throughout

the life of the project, through retirement of the software. Retention beyond this point is

governed by applicable record retention requirements.

Software planning templates and associated planning guidance documents and tools are available

in nationally-recognized standards.
18

 These proven standards and other equivalent references

should be used whenever possible for project planning. The project management templates and

guidance add important project management elements, such as cost and schedule, to the technical

elements of DOE O 414.1D and the selected consensus standard and hence help to ensure the

successful completion of the software project.

Work activity requirements, grading and rigor should be described in the project planning

documentation. The following general guidelines, based in part on lessons learned from

previous DOE projects should be considered in software project planning:

 Planning documentation should be kept current and updated as the project moves

forward. At the onset of a software project, the planning documentation may focus on

17 SQASG-TP-14-01 REV. 0, DOE Nuclear Safety Software Graded Approach Assessment Tool, Appendix C

provides grading examples based on software work activities.
18 IEEE/ International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC)

16326-2009, Systems and Software Engineering--Life Cycle Processes--Project Management

22 DOE G 414.1-4A

 XX-XX-2015

how to develop and design the software, with less emphasis on the details of software

use. As the software is developed and released, the project planning documentation

should be updated to focus on use, maintenance, inventorying, and retirement of the

software.

 Planning documentation should be developed to a level of detail that will promote

successful execution of the project.

 Planning documentation should be integrated with DOE cyber-security planning

requirements and documentation whenever possible to ensure integrated software items

and services.

 Planning documentation should address and integrate all applicable elements of the DOE

O 414.1D, including suspect/counterfeit item prevention and software inventory.

 Planning documentation should clearly identify SQA requirements and grading, and

provide a supporting rationale. This includes providing a clear description of the

applicability of the requirements, the grading by specifying the appropriate work activity

requirements, and the grading by applying appropriate rigor.

 Planning documentation should delimit the scope of the project and show that the scope

of software work can be managed by the project team.

 Planning documentation should address the financial and human resources available,

project schedule constraints, and methods for controlling changes to both resources and

schedule.

 Planning documentation should be developed for all software including custom-

developed, configurable or acquired.

Key aspects of software project planning include project management, acquisition, design,

verification and validation, approval for use, inventory, use and maintenance, and retirement.
 19

Key aspects of software project management include the application and documentation of

standards and conventions; categorization and grading; roles and responsibilities for the software

project team; interface control; problem detecting, reporting, preventing/mitigating and

corrective action; and configuration management of documentation, computer programs, and

support software. Some of these project planning elements may be addressed in other life-cycle

documentation.

5.2.1.2 Project Management and Quality Planning for OSW

Project management and quality planning apply to all software based on the graded approach.

However, grading is more commonly applied to OSW than to safety software because failure

consequences associated with OSW are lower.

19 Records planning/retirement should consider the need for records retrievability and future use of

software and as applicable, support software and hardware

DOE G 414.1-4A 23

DRAFT XX-XX-2015

23

To grade OSW, the safety software guidance in the previous section may be used. Grading is

done by specifying the appropriate work activity requirements and by applying the appropriate

rigor to implementation Appendix C offers an example that illustrates these points OSW.

Although this example applies to OSW, its general concepts may be applied to safety software.

5.2.2 Software Risk Management

There are increased project risks associated with the successful completion of a software project

with respect to custom-developed and configurable software. Software project risk management

provides a disciplined process for assessing the risk for potential software project failure.

Successful completion of a software project depends on careful identification of failure risks and

what actions can be taken to minimize those risks.
20,21, 22

Risk associated with the failure of a

software to perform its intended function is addressed separately in Section 5.2.7, Software

Safety Analysis and Safety Design Methods .

Managing project risks comprises three activities, namely risk assessment, risk control, and

resolution.

Risk assessment means identifying potential risks, analyzing them, and prioritizing them to

ensure that the available resources will be efficiently used. Several risk identification techniques

are described in literature and consensus standards and literature.
23,24

Risk control means tracking and resolution of risks. Tracking efforts should cover operational

and development costs, availability of resources, schedule constraints, and technical aspects of

the project.

Risk resolution means avoidance or mitigation of risk. Risk resolution is important because even

small risks during one phase of the software life-cycle have the potential to increase in some of

the downstream phase with possible very adverse consequences.

The SPMP (or a separate risk management plan) should specify how project risks will be

managed. The following elements should be covered:

 procedures for contingency planning;

20 SQAS21.01.00-1999 (Reference Document), Software Risk Management: A Practical Guide, Department of

Energy Quality Managers Software Quality Assurance Subcommittee, dated 2-2000.
21 IEEE/ISO/IEC 16326-2009, Systems and Software Engineering--Life Cycle Processes--Project Management
22 ISO/IEC 16085 IEEE Std 16085, Systems and Software Engineering-Lifecycle Processes-Risk Management.
23 Christensen, Mark J., and Richard H. Thayer, The Project Manager’s Guide to Software Engineering’s Best

Practices, Institute of Electrical and Electronics Engineers Computer Society Press, 2001, pp. 417–4.
24 Society of Automotive Engineers (SAE) JA1003, Software Reliability Program Implementation Guide, SAE

2004, Appendix C4.6

24 DOE G 414.1-4A

 XX-XX-2015

 methods for tracking the various risks, evaluating changes in the levels of risk and

responding to those changes;

 plans for assessing initial risk factors;

 mitigation of risks throughout the life-cycle;

 description of risk management work activities, procedures and schedules;

 documentation and reporting requirements;

 organizations and personnel responsible for performing specific activities; and

 procedures for communicating risks and risk status to acquirers, suppliers, and

subcontractors.

Software project risks are risks associated the acquirer-supplier relationship; contract,

technology, size and complexity of the product; development and target environments; personnel

acquisition; skill levels and retention; schedule and budget; and acceptance of the product.

Examples of potential software project risks include:

 incomplete or unstable software requirements;

 specification of incorrect or overly-simplified algorithms;

 hardware constraints limiting the design;

 design based upon unrealistic or optimistic assumptions;

 frequent design changes during coding;

 incomplete and undefined project and organizational interfaces;

 usage of unproven computer and software technologies;

 insufficient time for development and testing;

 undefined or inadequate test acceptance criteria; and

 quality concerns with subcontractors or suppliers.

5.2.2.1 Graded Approach to Software Risk Management

The grading of risk associated with software projects should vary depending on the software

categories, subcategories and risk associated with the software failure.

When there is significant risk that safety software, safety-affecting software, or critical software

may fail, sufficient rigor in the risk management process should be applied to ensure successful

project completion.

For general software, the QAP’s requirements for routine work activities are likely sufficient.

For example, existing processes for acquiring non-software items such as computer hardware

and office supplies may be sufficient for controlling the acquisition of general purpose software.

DOE G 414.1-4A 25

DRAFT XX-XX-2015

25

5.2.3 Software Configuration Management

Sound configuration management applies to all software acquisition and development activities.

Software configuration management (SCM) is the process of identifying software components,

controlling changes, and maintaining the integrity and traceability of the configuration. SCM

applies to all types of software and to the entire software life-cycle up to retirement of the

software. It provides the procedures necessary to ensure that (a) software modifications are

evaluated before changes are made, (b) various software units such as software modules and

libraries are examined for consistency and correctness after changes are made, and (c) software

is tested and accepted according to established standards.
25

SCM activities are designed to identify all functions and tasks necessary to manage the

configuration of the software system, including software engineering items, establishing the

configuration baselines to be controlled, and the software configuration change control process.
26

Each of the following five functions of SCM
27

 should be addressed when performing

configuration management: (1) configuration identification, (2) configuration control, (3)

configuration status accounting, (4) configuration evaluations and reviews, and (5) release

management and delivery.

Configuration control methods for each version or update of software should be documented. To

this end, a detailed SCM plan should be written to identify the required SCM activities and the

procedures that should be followed. The SCM plan should cover management, activities,

schedule, resources and plan maintenance.

The SCM plan should also discuss the configuration management roles of the software project

team. Topics to be covered include the roles and responsibilities of software developers, testing

and acceptance personnel, documentation writers, the code custodian, and the project manager.

All members of the team should be responsible for implementing the required configuration

management procedures and practices in their respective areas of responsibility.

A baseline labeling system should be implemented that uniquely identifies each configuration

item, identifies changes to configuration items by revision, and provides the ability to uniquely

identify each configuration. This baseline labeling system is used throughout the life of software

development and operation. Approved changes developed subsequent to the baseline should be

added to the baseline.

25 ANSI/ANS-10.7-2013 Non-Real-Time, High-Integrity Software for the Nuclear Industry - Developer

Requirements, Section 16, “Software Configuration Management”
26 ASME NQA-1-2008/NQA-1a-2009, op. cit., Part II, Subpart 2.7, Section 203
27 These functions are set out in IEEE Std 828-2005, IEEE Standard for Software Configuration Management Plans,

IEEE, 2005, Section 3.

26 DOE G 414.1-4A

 XX-XX-2015

Proposed changes to the software should be documented, evaluated, and approved for release.

Only approved changes should be made to the baseline software. Software verification and

validation (V&V) activities should be performed for all changes to ensure correct

implementation. V&V should also include any changes to the software’s documentation.

Evaluations or reviews should be conducted to verify that the software product is consistent with

the configuration item descriptions and that the software and its documentation are complete.

Physical configuration audits and functional configuration audits are examples of audits or

reviews that should be performed.
28

 SCM work activities should be applied as early in the

software life-cycle as possible, beginning at the point of control of the software.

During software operations, authorized user lists can be implemented to ensure that the software

use is limited to trained and authorized personnel. Authorized user lists are access control

specifications that are addressed in Section 5.2.5, Software Requirements Identification and

Management. These lists should be frequently updated to account for personnel changes.

5.2.3.1 Grading Software Configuration Management

For safety software and safety-affecting software, all SCM functions should be fully

implemented. For critical software and general software, a graded approach may be used. The

scope content and rigor with which the plan is developed, implemented and monitored will vary

with the significance of a software failure on an organization’s safety program or mission.

5.2.4 Procurement and Supplier Management

Procurement activities can range from the procurement of COTS software, to the purchase of

compilers, or other development tools used for in-house software development, to the purchase

of custom-developed software. The purpose of software procurement and supplier management

activities is to ensure that the software supplier is qualified and capable of providing the products

or services specified in the procurement contract.

Software procurement and supplier management should include the following activities:

 Review of the software supplier’s SQA practices;

 Review of the software supplier’s history of providing identical or similar products or

services;

 Review of shared supplier quality information through channels such as the DOE

Consolidated Audit Program and the DOE Laboratory Accreditation Program);

 Review of certifications or registrations awarded by nationally/internationally accredited

third parties;

28 Institute of Electrical and Electronics Engineers (IEEE) 1042-1987, IEEE Guide to Software Configuration

Management, IEEE, 1987, Section 3.3.4.

DOE G 414.1-4A 27

DRAFT XX-XX-2015

27

 Review of SQA documents provided by the supplier; and

 Review of supplier SQA information obtained though audits, surveillances, or surveys.

Software procurement documents should include the following elements:

 Safety, security, functional, and performance requirements;

 Consensus standards to be followed by the supplier (e.g., ASME-NQA-1-2008/NQA-1a -

2009, ISO 9001-2008, Quality Management Systems - Requirements);

 Software development and V&V processes to be used by the supplier in clearly specified

environments;

 Software documentation and training programs to be provided by the supplier;

 Criteria to be used for accepting the software product or service;

 Methods for the supplier’s reporting of defects, new releases, or other issues;

 Methods for the software users to report defects and request assistance when operating

the software;

 Supplier/acquirer interfaces including acquirer approvals; and

 A certificate of conformance or other self-declaration that the software meets its intended

quality.

5.2.4.1 Grading Software and Procurement and Supplier Management

DOE Order 414.1D, Attachment 4 requires safety software to be acquired, developed and

implemented using ASME NQA-1-2008/NQA-1a-2009, or other national or international

consensus standards such as ISO 9001 that provide an equivalent level of QA. If such standards

cannot be applied, commercial grade dedication should be used for safety software as set forth in

the site’s QAP.

Purchasers of safety-affecting or critical software should ensure that suppliers have a QAP based

upon a QA consensus standard listed in DOE O 414.1D, or another appropriate standard.

Purchasers of general software should ensure that the software is consistent with the

requirements of DOE O 414.1D as set forth in the site’s QAP.

5.2.5 Software Requirements Identification and Management

Identifying and managing software requirements provides a foundation or baseline for the

software development. The requirements should be developed using a process that includes

eliciting, specifying, and validating.

Elicitation is aimed at identifying software stakeholders and their needs. Requirements

specification consolidates and resolves conflicts in stakeholder needs and translates those needs

into clear concise requirement statements that can be met with measurable acceptance criteria.

28 DOE G 414.1-4A

 XX-XX-2015

Validation consists of a review of the requirements to ensure that they are achievable, concise,

complete, and satisfying to stakeholders.

Since most software applications interact with hardware, data, and other software applications as

part of system, software requirements should be derived from system requirements. This is true

even if the system consists of only the processor upon which the software is executed.
29

 These

system requirements should be translated into requirements specific for the software.

5.2.5.1 Software Requirements Specification (SRS)

The SRS should be documented in system-level requirements documents, software requirements

specifications, and procurement and other agreements as appropriate prior to software design or

development activities, in order to define the scope. Format and level of detail may vary with

the software type. For example, software requirements for custom-developed software will

differ from requirements for configurable software.
30

 The SRS should contain requirements

covering hardware, functions, interfaces, operations, performance, logical databases, systems and

communications, security, backup and recovery, and support. The following elements should be

included in the SRS:

 Functions the software is to perform in specified environments;

 Time-related performance issues of software operation such as speed, recovery time, and

response time;

 Design constraints imposed on implementation-phase activities;

 Attributes of software operation such as portability, acceptance criteria, access control,

and maintainability;

 Security requirements commensurate with the risk from unauthorized access or use; and

 External interfaces and interactions with people, hardware, and other software.

Requirements identified after the initial list is compiled should be reviewed and approved and

then integrated into the existing SRS.

These additional recommendations should be considered:

 SRS documents should be organized to allow traceability to both the software

requirements and the software design.

 SRS documents should be reviewed to ensure they are complete, correct, consistent,

clear, and verifiable.

29 IEEE Std 730-2014, IEEE Standard for Software Quality Assurance Processes, Section 4.6.3.
30 DOE Subcommittee on Consensus Assessment and Protective Actions Special Interest Group SCAPA SQA

Guidance – July 30, 2010.

DOE G 414.1-4A 29

DRAFT XX-XX-2015

29

 SRS documents should be managed throughout the software life-cycle31 to minimize

conflicting requirements and maintain accuracy for later validation activities.

 SRS documents should be reviewed at the completion of the software development cycle

to ensure that assumptions made during the software development process are consistent

with the intended use of the software.

Note also that custom-developed software most likely will contain a larger number of software

requirements than configurable or acquired software and thus, more formal documentation may

be necessary.

5.2.5.2 Grading Software Requirements Identification and Management

SRS documents for safety software application should identify the software safety functions, the

consensus standards and conventions to be applied to the software, and the documents and the

records to be managed in accordance with the ASME NQA-1-2008/NQA-1a-2009 standard

adopted in the site QAP.

SRS documents for safety-affecting software should identify the hazard control functions of the

software and consequences associated with the software not performing as intended. If the

software failure results in the very high-risk category (i.e., grading level 4), the SRS should

address all the elements described in Section 5.2.5.1 using consensus standards in the site’s

QAP.
32

 For safety-affecting software with lower consequence of failure, a graded approach

should be used.

SRS documents for critical software should identify the software functions and the consequences

of their failure. The SRS elements described in Section 5.2.5.1 should be graded according to

risk using consensus standards in the site’s QAP.

Software requirements identification and management for general-purpose software should be

performed according to the site’s QAP.

5.2.6 Software Design and Implementation

During software design and implementation, the software is developed, documented, reviewed,

and controlled. This section elaborates on the following guidance:

 The software design elements should identify the operating system, function, interfaces,

performance requirements, installation requirements, design inputs, and design

constraints.

31 IEEE-Std-830-1998, Software Requirements Specifications, Section 4.3
32 IEEE-Std 1228-1994, Software Safety Plans, Sections 4.3.5, 4.3.6, and 4.3.8

30 DOE G 414.1-4A

 XX-XX-2015

 The software design should be complete and sufficient to meet the software

requirements.

 The design activities and documentation should be adequate to fully describe how the

software will interface with other system components and how the software will function

internally.

 Data structure requirements and layouts should be constructed to fully understand the

internal operations of the software.

5.2.6.1 Software Design

The objective of the design phase is to produce a detailed description of the computer program

design that demonstrates how software requirements are met and provides the basis for the

software development activity. In this phase, the software architecture is developed based on the

software requirements. The output of the software design process is contained in one more

software design description (SDD) documents. The SDD documents describe the overall

software structure and its major components, and interfaces. The software design should

consider both the operating and security environment and can be translated into code.

The software design should have the following features:
33

 The description of the problem to be solved, the assumptions and limitations,

mathematical models, and numerical methods to be used, should be documented

 The software should be divided into simple, manageable, and understandable sets or units

(modular design),

 The critical date structures and related operations in the software design should be

encapsulated within units to the maximum extent practicable to ensure that data are

properly handled and no errors are encountered when the data are retrieved,

 The design should specify the interfaces (including the user interface), control flow and

data flow, control logic, data structure and process structure,

 The design should implement appropriate safety design methods based on safety analysis

and consider principles of simplicity, decoupling, and isolation to eliminate hazards.
34

(Complexity of the software design, including the logic and number of data inputs tends

to increase the defect density in software components.),

 The design should explicitly identify data that require special handling or security

protection; for access to such special data, the design should address both cybersecurity

and physical security, and

33 For additional guidance see IEEE Std 1016, Recommended Practice for Software Design Descriptions, 1987.
34 Leveson, Nancy, Safeware: System Safety and Computers, Addison Wesley, 1995.

DOE G 414.1-4A 31

DRAFT XX-XX-2015

31

 The design should address and resolve potential problems that including external and

internal abnormal conditions and events.

The primary deliverable in the design phase is the SDD document which should be structured

and written such that a competent programmer other than the designer can implement it. The

design should be documented with sufficient detail so that a qualified person can review,

understand and verify its adequacy without calling upon the originator.

A good design is characterized by:

 clear traceability from the software requirements to the design,

 ease of comparing requirement specifications to overall system requirements,

 ease of comparing individual design documents to corresponding requirements

specifications,

 ease of comparing program details during testing to applicable design publications, and

 ease of assessing the accuracy of implementation during the operational life-cycle phase.

For system software, the development process should be managed as an integral part of system

design. Information containing system, hardware, pre-developed software requirements, and

design specifications should be collected and identified as design input documentation. For

additional details on digital systems software see Section 6.2.

 Documentation for design and analysis software includes design and development documents

and application documents. Typical design and development documentation are: problem

definition, development plan, theory manual, requirements specification, design description,

programmers manual, and V&V reports with version tracking. Typical application documents

are: computer program abstract, theory manual, user’s manual, and validation report, all with

version tracking. For development, validation and evaluation of models for use with design and

analysis software see Section 6.1.

Design reviews are a common tool used to ensure that the design meets specified requirements

and conform to consensus standards. Such reviews are done by comparing the software product

against specified criteria. Through these reviews, which should occur throughout the software’s

life-cycle, problems and non-conformances are identified and subsequently resolved.

5.2.6.2 Software Implementation

During implementation, the software design is translated into computer programs or code. The

resulting code is debugged and integrated into computer program modules. Some of the key

attributes of an effective computer program are: (1) it implements the design completely as

documented in the SDD and is easily related to it; (2) it conforms to applicable programming

standards; (3) it uses standard programming language with well-defined syntax and semantics;

32 DOE G 414.1-4A

 XX-XX-2015

(4) it provides protection against detectable run-time errors; (5) it has a clear and easy-to-follow

program structure; (6) it facilitates verification activities and future modifications; and (7) it is

easy to understand.
35

The source code for developed software should be placed under configuration management prior

to the commencement of the test phase. This test phase is often iterative in the sense that unit

and integration testing are performed after code construction, the results analyzed, and then used

in another round of programming to identify and correct errors.

The initial software version should be assigned prior to the completion of each software module.

Changes to the software from the initial version should be controlled and documented.

Documentation should include a copy of the software, test cases, and associated criteria that are

traceable to the software requirements and design documentation.

Deliverables in this implementation phase include program listings, source code, executable

code, and user’s guide.

During implementation, static analysis, clean room inspections, and reviews are common

techniques to ensure the implementation remains consistent with the design and does not add

complexity or functions which could decrease the safe operation of the software. Many tools

exist to evaluate the complexity and other attributes of the source code design structure.

Walkthroughs and more formal structured processes for determining defects, such as Fagan

inspections, can be used to identify defects in source code, design descriptions and other

development process outputs.

The software developer should perform unit testing prior to system-level V&V, including

acceptance testing. Developer testing can be structured and formal, using automated tools, or

less formal methods. Other testing methods such as functional, structural, performance interface,

stress and human-factors testing are useful to test various aspects of the software. These methods

are applied to identify errors and defects and to check that the software performs as intended

when errors and defects are corrected. Several tools are also available to support testing

activities.

5.2.6.3 Grading Software Design and Implementation

This work activity does not apply to acquired or commercial design and analysis safety software

and OSW since the design and implementation activities for this type of software.

Safety Software:

35 IAEA Technical Reports Series No. 397, Quality Assurance for Software Important to Safety, IAEA, 2000.

DOE G 414.1-4A 33

DRAFT XX-XX-2015

33

The software design and implementation work activity as described in sections 5.2.6.1 and

5.2.6.2 above should be performed and documented for custom-developed safety software. For

configurable safety software this work may be graded. The design and coding related work

activities should be performed in a similar manner as with custom-developed software. Less

formal design and coding reviews such as simple desk checks by another qualified individual

other than the developer may be performed. Developer testing that includes safety functions,

security and performance should be conducted and documented.

OSW:

The software design and implementation work activity as described in sections 5.2.6.1 and

5.2.6.2 above is applicable for custom-developed safety-affecting software with high to very

high consequences of software failure. For critical and general OSW, this work activity may be

graded with less formal reviews. However, the design and coding activities should preferably be

performed as described in sections 5.2.6.1 and 5.2.6.2 above.

5.2.7 Software Safety Analysis and Safety Design Methods

5.2.7.1 Software Safety Analysis

The development of software applications requires (a) identification of hazards that have the

potential for defeating or limiting a safety function and (b) implementation of design strategies to

eliminate or mitigate those hazards. Accordingly, the software safety process should address the

mitigation strategies for the components that have potential safety consequences if a fault occurs.

The software design and implementation process should address the architecture of the safety

software application.

Software is only one component of the overall safety system. It may be embedded in an

instrumentation and control system, it may be a custom control system for hardware components,

or it may be standalone software used in safety management or decision-making. In any

applications of software important to safety, analysis of the application occurs first at the system

level. The analysis should then be performed at the software component level to ensure adequate

safeguards are provided to eliminate or mitigate the potential occurrence of a software defect that

could result in a system failure. Software safety analysis is intended to identify possible hazards

presented by the use and operation of the software and to describe methods that can be used to

eliminate, mitigate, monitor or manage potential hazards. Typically, a hazard (i.e., abnormal

conditions and events) presented by software is the result of a failure of the software to function

as expected.

34 DOE G 414.1-4A

 XX-XX-2015

Software failure may have a direct or indirect effect on safety. A direct effect is one resulting in

the failure, degradation or abnormal operating condition of a safety system. An indirect effect is

one resulting in a reduction of the safety margin in a safety system.

Several hazard analysis techniques may be used for this purpose. These techniques include

failure modes and effects analysis, fault-tree modeling, event-tree modeling, cause-consequence

diagrams, hazard and operability analysis, and interface analysis. These techniques should be

applied and documented when assessing the effects of credible software failures. The software

safety analysis process should also address mitigation strategies for credible software failures

that have safety consequences.

5.2.7.2 Safety Design Methods

Methods to mitigate the consequences of software failures should be an integral part of the

software design.
36

 Specific software analysis and design methods, for ensuring that safety

functions are deliberately considered and properly addressed, should be performed throughout

the software development and operations life-cycles. These methods include dynamic and static

analyses.

During the initial conceptual design of software, potential failures should be identified and

evaluated for probability of occurrence and failure consequences. Some potential problems to be

watched for are: (1) complex or faulty algorithms, (2) improper handling of correct data or error

conditions, (3) buffer overflow, and (4) incorrect sequence of operations due to logic or timing

faults.

Hazard analysis techniques can be used for preliminary probability and consequence analyses.

These analyses can later be updated as more information is known about the requirements and

design structure. These techniques help practitioners understand and assess the impact of

software failures on the system.

In the design architecture, safety modules should be separate from non-safety modules to

minimize the effect of failure of one module on another.
37

 The interfaces between the modules

should be defined and tested thoroughly. Separation of the safety features also allows for more

rigorous software development and verification practices to be applied to the safety components,

while applying a cost-effective level of SQA to the non-safety components. Design practices

should include process flow analysis, data flow analysis, path analysis, interface analysis, and

interrupt analysis.

37 IEEE Std 7-4.3.2-2003, Criteria for Digital Computers in Safety Systems for Nuclear Power Generating Stations

Section 5.6.

DOE G 414.1-4A 35

DRAFT XX-XX-2015

35

When a potential hazard affecting software functions cannot be eliminated, the hazard itself

should be mitigated. Given that software can experience partial failures that may degrade to an

undetectable degree the capabilities of the overall system, other design techniques such as built-

in fault detection and self-diagnostics should be employed. External monitors, n-version

programming, and Petri nets are examples of techniques by which fault-tolerant concepts can be

added to the design.
 38,39

 Self-diagnostics detect and report software faults and failures in a

timely manner and allow actions to be taken to avoid an impact on the system’s safe operation.

Some of these techniques employ memory functionality and integrity tests such as checksums

and watch dog timers.
40

 Software control functions can be performed incrementally rather than

in a single step, reducing the potential that a single failure of a software component would cause

an unsafe system state.

5.2.7.3 Grading Software Safety Analysis and Safety Design Methods

The safety analysis and safety design methods just described apply to custom-developed and

configurable software. The work activities for these methods should be carried out as indicated

for Level A safety software whose failure could cause unacceptable consequences. For Level B

or Level C safety software applications, the work activity may be graded. This grading may

include performing a limited safety analysis to confirm that major safety risks have been

identified and addressed at the software requirements and design phase. For safety-affecting

software with high to very high consequences from software failure, this work activity should be

conducted such that safety risks are identified and addressed.

5.2.8 Software Verification and Validation

V&V is one of the most important work activities for identifying defects, making necessary

corrections, and ensuring that the corrected software will perform its intended function. DOE

O 414.1D adopts the definitions for verification and validation from IEEE Std 1012,
41

 as

follows:

Verification is the process of: (a) evaluating a system or component to determine whether

the products of a given development phase satisfy the conditions imposed at the start of that

phase; or, (b) providing objective evidence that the software and its associated products

conforms to requirements (e.g., for correctness, completeness, consistency, accuracy) for all

life-cycle activities during each life-cycle process (acquisition, supply, development,

operation, and maintenance); satisfies standards, practices, and conventions during life-cycle

38 Sparkman, Debra, Techniques, Processes, and Measures for Software Safety and Reliability, Lawrence Livermore

National Laboratory, UCRL-ID 108725
39 SAE JA1003, Software Reliability Program Implementation Guide, SAE, 2004, Appendix C
40 IEEE Std 7-4.3.2-2003, op. cit., Section 5.5.3
41 IEEE Std 1012-2004, IEEE Standard for Software Verification and Validation, IEEE 2004.

36 DOE G 414.1-4A

 XX-XX-2015

processes; and, successfully completes each life-cycle activity and satisfies all the criteria

for initiating succeeding life-cycle activities (e.g., building the software correctly).

Validation is the process of: (a) evaluating a system or component during, or at the end of

the development process to determine whether it satisfies specified requirements; or, (b)

providing evidence that the software, and its associated products, satisfies system

requirements allocated to software at the end of each life-cycle activity, solves the right

problem (e.g., correctly models physical laws, implements business rules, uses the proper

system assumptions), and satisfies the intended use and user needs.

Verification activities are performed throughout the software life-cycle, while validation

activities are mainly performed at the end of software development or acquisition to ensure the

software meets prescribed requirements. V&V activities should be performed by competent staff

independent from those who developed the software.
42

 The V&V tasks outlined in this section

are derived from acceptance testing requirements in ASME/NQA-1-2008/NQA-1a-2009

supplemented by other activities, reviews, inspections, assessments, and observations described

in other consensus standards.

Reviews and inspections should be performed of software deliverables
43

 and processes that guide

the software development activities. Traceability of the software requirements to the software

design should also be performed.
44

 Inspections can be formally implemented Fagan inspections,

walkthroughs, or desk checks. Verification of the software design using any one of the above

methods should be completed prior to approval of the software for application and use.
45

 This

verification process may be performed as part of the software development and implementation

activity.

Observations should be performed during the development, factory or site acceptance testing,

installation, and operation (i.e., in-use testing)
46

 of the software. Software testing activities

should be planned and implementation documented. Test cases and procedures, including

expected results, should be developed and test activity deliverables such as test results and

software limitations should be placed under a configuration management system.
47

Acceptance testing should include the following tests: (1) functional testing, (2) performance

testing, (3) security testing, (4) stress testing, and (5) load testing. Hazard analysis should be

used for defining test cases and procedures. Testing strategies that may be appropriate for

acceptance testing include: (1) equivalence class testing, (2) branch and path testing, (3)

42 ASME NQA-1-2008/NQA-1a-2009, op. cit., Part I, Requirement 3, Section 801.4
43 Deliverables are requirement specifications, procurement documents, software design, code modules, test results,

training materials, and user documentation.
44 ASME NQA-1-2000/NQA-1a-2009, op. cit., Part II, Subpart 2.7, Section 402.1
45 ASME NQA-1-2008/NQA-1a-2009, op. cit., Part II, Subpart 2.7, Section 402.1
46 ASME NQA-1-2008/NQA-1a-2009, op. cit.,Part I, Requirement 11, Section 400
47 ASME NQA-1-2008/NQA-1a-2009, op. cit., Part I, Requirement 11, Section 200

DOE G 414.1-4A 37

DRAFT XX-XX-2015

37

statistical-based testing and (4) boundary value testing. User’s guide, use cases, and operational

profiles are instrumental in identifying and detailing the test cases and procedures.

Software used for operational control should be monitored by periodic testing throughout its

lifetime to verify its current reliability and detect any degradation.
48

 If such testing is not

possible, monitoring using quantitative measurements should be performed.

When a new version of a software product is obtained, tests should be performed to validate that

the system meets the intended requirements and does not perform any undesired functions.
49

 If

the system is already operational, only positive testing may be possible. In those instances

analysis should be performed of failure modes to understand the consequences of failures or

abnormal operational states.

In the case of commercial design and analysis software, V&V activities associated with this type

of software are performed primarily by the developer and/or the software service supplier.

Additional V&V may be necessary for this type of software depending on the specific use and

application.

As indicated above, the validation process relies on evaluating software as a solution to the right

problem. Validation plays an especially important role for scientific and engineering software

that use computational models to understand complex real-world phenomena and engineered

systems. Validation techniques are employed to ensure that the model is a reasonably accurate

representation that can be used for solving the problem for which it was designed with a high

degree of confidence. Model validation plays a primary role in the overall software validation

process for this type of software. The V&V of models, with an emphasis on model validation, is

covered in Section 6.3 in the context of model development and evaluation.

5.2.8.1 Grading V&V

Safety Software:

This work activity applies to Level A and B custom-developed, configurable and acquired safety

software, except for applications with utility and commercial design and analysis software.

Under this work activity, custom-developed software will most likely have a larger number of

and more detailed deliverables than others. For Level A safety software, all deliverables should

be reviewed using V&V methods and traceability of the requirements should be performed. For

Level A and B safety software, deliverables that include requirements, test plans and procedures,

and test results should be reviewed using V&V methods.

48 ASME NQA-1-2008/NQA-1a-2009, op. cit.,Part I, Requirement 11, Section 400.
49 ASME NQA-1-2008/NQA-1a-2009, op. cit.,Part II, Subpart 2.7, Section 404.

38 DOE G 414.1-4A

 XX-XX-2015

For all Level A safety software except utility calculations, acceptance testing work activities

should be planned and documented; acceptance test cases and procedures including expected

results should be created; test results should be documented; and all test activity deliverables

should be under configuration control. Level A utility calculations and Level B and C custom-

developed, configurable, and acquired software may use a graded approach by applying less

formality in the documentation. Simple checklists for acceptance test cases and procedures may

be used in place of more detailed test cases and procedures. Test results should be documented

and all test activity deliverables placed under configuration management

From a SQA perspective, configurable software should generally be treated the same as custom

software. With configurable software, however it is important to differentiate between QA of the

algorithms, macros, and logic that perform the calculations and QA of the configurable software

itself (i.e., spreadsheet). Modern utility calculation applications such as spreadsheet programs

have grown immensely in power and scope, with a corresponding growth in complexity. With

complexity comes the risk that the program will not perform correctly if not managed under an

acceptable SQA program. The addition of macro programming languages and the ability to

incorporate “add-in” programs provide users with nearly the same capabilities as code developed

with more traditional programming tools. Utility calculation applications are installed on

virtually every desktop, and files containing algorithms and data can be easily modified by users.

Consensus standards
50

 provide guidance on appropriate V&V programs for utility calculations.

Calculations performed using applications such as commercial spreadsheet programs may be

treated in one of two ways:

 For relatively straightforward calculations, the results may be checked and verified in the

same manner as a hand calculation.

 For more complex cases not amenable to simple methods, the user files containing the

calculation formulas, algorithms, or macros should be subjected to the entire software

life-cycle process. This approach may also be expedient for calculation applications that

are reused frequently.

OSW:

For safety-affecting, custom-developed or configurable software with very high consequences of

software failure, the V&V work activity described in this section should be implemented. For

critical and general software, the V&V effort may include simplified result-oriented testing

programs and less formality in documentation. The user organization may determine the level of

the effort that is to be applied commensurate with the risk associated with the specific

application.

50 ASME NQA-1-2008/NQA-1-2009, op. cit., Subpart 4.1, Section 101.1.

DOE G 414.1-4A 39

DRAFT XX-XX-2015

39

5.2.9 Problem Reporting and Corrective Action

The problem reporting and corrective action process should be consistent with the site’s QAP

corrective action system and the adopted QA consensus standard. The scope of the process

should extend to: (1) methods for documenting, evaluating and correcting software problems,

(2) an evaluation procedure for determining whether a reported problem is indeed a defect or an

error,
51

 and (3) management roles and responsibilities for disposition of problem reports.
52

Maintaining a robust problem reporting and corrective action process is vital to maintaining the

reliability of the software. This process should not be separate from an existing reporting

process provided it adequately addresses the items in this work activity.
53

5.2.9.1 Reporting Problems by Suppliers and Developers

Procurement documents should identify the requirements for suppliers or developers of the

software to report problem to the purchasers. The documents should also state the methods to be

used for reporting, and the required response from the supplier or developers.
54

5.2.9.2 Grading for Problem Reporting and Corrective Action

Safety Software:

For safety software other than safety system software, if the noted problem is an error, the

problem reporting and corrective action process should identify the potential impacts of the error

on past and present usage of the software, identify the impact of corrective action on previous

development activities, appraise users of the problem report and identify strategies for avoiding

the error pending implementation of the corrective action.

For errors in safety system software, the problem reporting and corrective action system should

identify the potential impacts of the software error on past and present operations of the SSC and

its controls, determine corrective action and mitigation strategies as necessary, and determine if

the error has any impacts on the safety basis.

OSW:

For errors in safety-affecting software the problem reporting and corrective action system should

identify the potential impacts of the software and determine corrective action and mitigation

51 Software errors should be differentiated based on their significance and severity to degrade software function and

system reliability. Software errors can be related to requirement errors, design errors, algorithmic processing

errors, interface errors, performance errors and documentation errors.
52 ASME NQA-1-2008/NQA-1-2009, op. cit., Part II, Subpart 2.7, Section 204
53 ASME NQA-1-2008/NQA-1-2009, op. cit., Part IV, Subpart 4.1, Section 204
54 ASME NQA-1-2008/NQA-1-2009, op. cit., Part II, Subpart 2.7, Section 301

40 DOE G 414.1-4A

 XX-XX-2015

strategies as necessary, and determine if the error has any impact on the safety basis. If the noted

problem is a software error in a critical or general software application, the problem reporting

and corrective action system should be implemented to address the appropriate requirements of

the QAP.

5.2.10 Training of Personnel in the Design, Development, Use, and Evaluation of Software

A trained and knowledgeable staff is essential to assess and evaluate the SQA requirements to

ensure the proper levels of quality and safety exists in the software. Training personnel in

designing, developing, testing, evaluating, or using software application is critical for

minimizing potential software failures. Although other SQA work activities may indicate that

the software satisfies its operational objective, improper or invalid use of the software may

negate the safety mitigation strategies included within the software.

Personnel who have direct responsibility for managing staff who design, develop, use, and

evaluate software should receive specialized training on how these software-related activities

should be managed and implemented. This training should be commensurate with the scope,

complexity, and importance of the software. Completion of this management training should be

documented and reviewed in the same manner as is performed.

Training may be necessary for the analysts, development and test teams, application users, and

operations staff. The analysts and developers may have to be trained in fault tolerant

methodologies, safety design methodologies, user interface design issues, testing methodologies,

or configuration management to ensure delivery of a robust software application. Also, the

software application users and operations staff may have to be trained to ensure that proper data

are entered, that proper options and menus are selected, and that the results of the software can

be interpreted and correctly applied.

Training should be commensurate with the scope, complexity, and importance of the tasks and

the education, experience, and proficiency of the individual. Training and qualification

requirements should meet the consensus standard(s) specified in the QAP. Personnel should also

participate in continuing education and training as necessary to improve their performance and

proficiency and ensure that they stay up-to-date on changing technology and new requirements.

Completion of training, education, and/or qualification requirements for staff involved in the

development, testing, use, and evaluation of safety software should be documented and

periodically reviewed. For OSW, similar training, education, and/or qualification for staff

should be implemented and document in accordance with the QAP.

DOE G 414.1-4A 41

DRAFT XX-XX-2015

41

6. SPECIAL TOPICS SUPPORTING SOFTWARE QUALITY ASSURANCE

This section of provides information on:

 Model Development and Evaluation,

 Digital System Software Quality Assurance,

 Commercial Grade Dedication of Computer Programs, and

 Software Security Assurance

These topics were not addressed in the previous version of this Guide.

6.1 MODEL DEVELOPMENT AND EVALUATION

6.1.1 Introduction

Models are simplifications of the real world constructed to gain insights into select attributes of a

particular physical, biological, economic, engineered, or social system. To create a model,

scientific and engineering software is often used to simulate complex static and dynamic

behavior observed in real-world natural phenomena and engineered systems. This section

focuses on computational models that use measurable and estimated variables, numerical inputs,

and mathematical relationships to produce quantitative outputs.
55

The role of computational models is growing in decision-making despite their inherent

limitations. Models, though generally subject to aleatory and epistemic uncertainties, can still

provide valuable insights into facets of the real world. As a whole, models serve primary

purposes of diagnosing observed phenomena or processes and predicting outcomes. Results

from computational models aid the decision-making process by replacing or supplementing

physical testing results in situations in which physical testing is impractical or physically

impossible.

The next three subsections describe: (1) model development; (2) model V&V; and, (3) model

evaluation. The development, V&V, and evaluation of models are closely tied to one another

and are often executed in parallel through an iterative process. For example, the results from

V&V and evaluation activities often provide insights for improvements to models that lead to

further development. Since these topics can only be briefly discussed within the context of this

guide, a basic summary is provided of concepts, processes and activities related to model

development, V&V, and evaluation. Additionally, key principles are explained and selected

sound practices from the published literature are highlighted.

55 EPA/100/K-09/003, Guidance on the Development, Evaluation, and Application of Environmental Models, March

2009.

42 DOE G 414.1-4A

 XX-XX-2015

Following established practices from authoritative, peer-reviewed publications promotes

consistent and informed management of models. Standards, guides, and publications from

commercial industries, government agencies, and recognized subject matter experts offer

recommendations for the systematic development and evaluation of models. Information

summarized in the following subsections is derived from more than a dozen authoritative

publications dealing with computational models. These publications are referenced in

Appendix G of this Guide and should be consulted for further exploration of the particular topics.

6.1.2 Model Development

The development of models shares many features with development of software of other types.

As shown in Figure 6.1-1, development typically starts with a conceptual model configured for

the problem to be solved. The conceptual model is then translated into mathematical terms based

on science and engineering principles. This process leads to a computational code which may

contain scientific and/or engineering equations describing the process, phenomenon, or system of

interest.

When equations describing the mathematical model cannot be solved analytically, a numerical

solution technique such as finite element and finite difference is implemented. The numerical

algorithm and its input parameters represent the computational model. The algorithm is then

converted into computer code.
56

56 ANSI/ANS 10.7-2013, Non-Real-Time, High-Integrity Software for the Nuclear Industry—Developer

Requirements

DOE G 414.1-4A 43

DRAFT XX-XX-2015

43

Reproduced from ASME V&V 10-2006, Guide for

Verification and Validation in Computational Solid

Mechanics

Conceptual Model

Collection of assumptions, algorithms, relationships, and

data that describe the reality of interest.

Mathematical Model

Mathematical equations, boundary values, initial

conditions, and modeling data needed to describe the

conceptual model.

Computational Model

Numerical implementation of the mathematical model,

usually in the form of numerical discretization, solution

algorithms, and convergence criteria.

[Definitions from LA-14167-MS, “Concepts of Model

Verification and Validation,” Thacker et al., 2004.]

Figure 6.1-1 Framework for computational model development

The National Research Council advocates the use of a modular design in the computational

model. A modular design allows creation of models of various complexities by adding or

removing modules from the basic code structure. An additional benefit of a modular design is

that debugging and testing are easier to perform.

6.1.3 Model Validation

Validation of the conceptual model is performed as shown in Figure 6.1-2. Note that the inner

solid black arrows represent model and software development activities. The outer dashed red

arrows represent V&V activities; arrow heads at each end signify an iterative process: V&V

uncovers model deficiencies, the software developer corrects them and another cycle begins.

This cycle repeats until software functionality meets the acceptance criteria for that phase.

44 DOE G 414.1-4A

 XX-XX-2015

Figure 6.1-2 Model development and its V&V Processes

[modified from Thacker, 2004 and Schlesinger, 1979]
57

Conceptual model validation evaluates the reasonableness and correctness of the model as it

relates to its intended purpose, taking into account aleatory and epistemic uncertainty. The

primary validation techniques used for these evaluations are face validation and trace analysis.
58

Data that are incorporated into the model can also be validated at this stage. Monte Carlo and

Latin Hypercube sampling techniques can be employed to provide a series of outcomes at

various probability levels for more comprehensive modeling applications. For these types of

codes, care must be taken to ensure that the sampling technique is statistically sound and the

Monte Carlo error is minimized. Larger samples generally reduce the size of the Monte Carlo

error.

Documentation for the conceptual and mathematical models may include descriptions of

assumptions, equations, algorithms, internal data, and application domain limitations related to

hypotheses, theories, logic, interfaces, and solution approaches
59

. This documentation is

reviewed for clarity, completeness and correctness as part of the verification process. Subject

matter experts may be used for model verification.

57 Thacker, B. H., S. W. Doebling, F. M. Hemez, M. C. Anderson, J. E. Pepin, and E. A. Rodriguez, Concepts of

Model Verification and Validation, LA-14167-MS, Los Alamos National Laboratory, October 2004.
58 Sargent, R. G., Verification and Validation of Simulation Models, In Proc. 2011 Winter Simulation Conf., ed. S.

Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, Piscataway, New Jersey: Institute of Electrical and

Electronic Engineers Inc., 2011.
59 Chew, Jennifer, and Cindy Sullivan, Verification, Validation, and Accreditation in the Life Cycle of Models and

Simulations, Proceedings of the 2000 Winter Simulation Conference, ed. J. A. Joines, R. R. Barton, K. Kang, and P.

A. Fishwick, Orlando, FL, December, 2000.

DOE G 414.1-4A 45

DRAFT XX-XX-2015

45

More complete and comprehensive V&V is performed after the model is translated into

computer code. Code walkthroughs or inspections of key sections may be used to confirm that

the mathematical model and algorithm are correctly represented throughout the application

domain and that boundary conditions do not introduce computational errors.

Table 6.1-1 shows some of the commonly-used model validation techniques established in

consensus standards and SQA guidance documents. The most reliable approach is comparison

of software model output to experimental or field data when such data are both applicable and

available. The next preferable technique is comparison against output from similar software that

has undergone V&V. Other somewhat less reliable methods may provide either supplemental

evidence of fidelity to real-world representativeness or an alternative means for model validation

for situations in which real-world data are unavailable or are temporally or spatially limited.

46 DOE G 414.1-4A

 XX-XX-2015

Table 6.1-1 Model Validation Techniques
60, 61, 62, 63, 64, 65

Model Validation Technique Description

Comparison Against Field or Laboratory

Data (also referred to as Output Validation)

Output from software model is directly compared to real world

phenomena or controlled laboratory conditions.

Turing Tests A panel of SMEs are presented with two blind sets of data; one

representing the model results and the other representing real-world

data, and asked to differentiate between them.

Comparison Validation (also referred to as

Code-to Code Comparisons, Comparison

to Other Models, Benchmarking)

Output from software model is directly compared to previously

accredited software models dealing with a similar engineered

system or similar real-world phenomenon.

Unit Testing (also referred to as, or closely

related to, Functional Decomposition

Validation, Piecewise Validation, Sub-

model/Module Testing)

Output from simplified cases or individual sub-models are compared

to: (1) available representative experimental field or laboratory data;

(2) output from other representative software; or, (3) results from

hand calculations based on applicable first principles or empirical

evidence. Subsequent integration testing of each component then

evaluates how well the individual components or modules are

integrated.

Trace Analysis The behaviors of different types of specific entities in the model are

traced through the model to determine if the model’s logic is correct.

Visualization Analysis (also referred to as

Graphical Analysis, Animation Analysis)

Graphical results or output animations for representativeness to real-

world behavior in terms of temporal variations, spatial distributions,

correlated dependencies, and any other relevant observable trends

are examined.

Sensitivity Analysis Key input parameters are systematically varied over ranges of

interest. The corresponding output from the software model is

examined to evaluate consistency of the model response with respect

to expected behavior.

Face Validation (also referred to as Peer

Review)

A panel of SMEs critically reviews software model output and

provides technical opinions on its reasonableness based on its

knowledge of first principles and related empirical evidence.

Visualization analysis and/or sensitivity analysis may be used

whenever suitable data exist.

60 ANSI/ANS 10.7-2013, Non-Real-Time, High-Integrity Software for the Nuclear Industry—Developer

Requirements
61 Sargent, R. G., Verification and Validation of Simulation Models, In Proc. 2011 Winter Simulation Conf., ed. S.

Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, Piscataway, New Jersey: Institute of Electrical and

Electronic Engineers Inc., 2011.
62 ATEC, Test and Evaluation, Modeling and Simulation Verification, Validation, and Accreditation Methodology,

Pamphlet 73-21, Department of the Army, Army Test and Evaluation Command, Alexandria, VA, April 2007
63 M&SCO (2006), VV&A Recommended Practices Guide, Modeling and Simulation Coordination Office (M&S

CO), VV&A Recommended Practices Guide, September 2006.
64 DA, Verification, Validation, and Accreditation of Army Models and Simulations, Pamphlet 5-11, Department of

the Army, Washington, DC, September 1999.
65 NIST, Reference Information for the Software Verification and Validation Process, NIST Special Publication

500-234, National Institute of Standards and Technology, Gaithersburg, MD, March 1996.

DOE G 414.1-4A 47

DRAFT XX-XX-2015

47

6.1.4 Model Selection and Evaluation

Model evaluation gauges whether a model applies to a particular class of problems, taking into

account inherent limitations of the model and aleatory and epistemic uncertainties in the

results.
66,67,68,69,70

 One often-overlooked type of uncertainty is that there may be more than one

model suitable for a specific problem. A sound practice to address this uncertainty is to

document the basis for selecting the model over any of the alternatives.
71

A guiding principle for model selection is to choose the simplest model suitable for the intended

purpose.
72

 A set of best practices has been developed based on this principle.
73

 Figure 6.1-3

illustrates the principle of finding an optimal level of complexity for models having two primary

sources of uncertainty:
74

 Model framework uncertainty, which is a function of the soundness of the model’s

underlying scientific foundations; and

 Data uncertainty, which arises from measurement errors, analytical imprecision and

limited sample size during collection and treatment of the data used to characterize the

model parameters.

Simple models, represented on the left side of graph, have a high level of total uncertainty driven

by framework uncertainty. This framework uncertainty arises from incomplete modeling of real-

world phenomena. Data uncertainty is low because only a few input variables are needed to run

simple models. Complex models, represented on the right side of graph, also have a high level

of total uncertainty composed mainly of data uncertainty. The data uncertainty arises from the

large set of input variables needed to “feed” the numerous equations used in complex models.

The optimal level of complexity is located at the center or the graph, where the total uncertainty

reaches a minimum level owing to a balanced treatment of the model framework and data

uncertainties.

66 Thacker, B. H., S. W. Doebling, F. M. Hemez, M. C. Anderson, J. E. Pepin, and E. A. Rodriguez, Concepts of

Model Verification and Validation, LA-14167-MS, Los Alamos National Laboratory, October 2004.
67 Overcamp, William L. and Timothy G. Trucano, Verification and Validation in Computational Fluid Dynamics,

SAND2002-0529, Sandia National Laboratories, March 2002.
68 Roach, Patrick J. Verification and Validation in Computational Science and Engineering, Hermosa Publishers,

Albuquerque, NM, 1998
69 EPA/100/K-09/003, op. cit.
70 National Research Council, Models in Environmental Regulatory Decision Making, National Research Council,

Washington D.C., 2007
71 National Research Council, op. cit.
72 National Research Council, op. cit.
73 EPA/100/K-09/003, op. cit.
74 EPA/100/K-09/003, op. cit.

48 DOE G 414.1-4A

 XX-XX-2015

Figure 6.1-3 Optimal Level of Model Complexity

[Reproduced from EPA, 2009; adapted from Hanna, 1988]

Since different models contain various types and ranges of uncertainty, sensitivity analyses can

be useful early in the development phase to quantify the relative importance of each parameter to

the expected outcome. Sensitivity analysis is the process of determining to what extent changes

in the model input values or assumptions, including boundaries conditions and model functional

form, affect the model outputs. Model complexity can be constrained by eliminating parameters

when sensitivity analyses show that they do not significantly affect the outputs and there is no

process-based rationale for including them.

With the increasing use of advanced computer models such as computational fluid dynamic

(CFD) models, uncertainty quantification has gained considerable attention in the published

literature.
75, 76, 77, 78, 79

 Uncertainty quantification of the model often requires advanced

75 Thacker, op. cit.
76 Overcamp, op. cit.
77 Roach, Patrick J. Verification and Validation in Computational Science and Engineering, Hermosa Publishers,

Albuquerque, NM, 1998
78 EPA/100/K-09/003, op. cit.
79 National Research Council, op. cit.

DOE G 414.1-4A 49

DRAFT XX-XX-2015

49

mathematics such as Monte Carlo and Latin Hypercube simulations and Bayesian analysis.

Significant sources of uncertainty and their effects on model predictions should be documented

to the extent achievable.

Exact quantification of uncertainty is not feasible in some situations, especially with highly

complex models. In such cases, a qualitative approach using peer review and other V&V tests

may be the only realistic option.
80

 In qualitative analysis, the directions of the output behaviors

are examined and also possibly whether the range of magnitudes is within reasonable bounds. In

quantitative analysis, both the directions and the precise magnitudes of the output behaviors

should be examined. SMEs on the system usually know the directions and often know the

general values of the magnitudes of the output behaviors.
81

6.2 DIGITAL SYSTEM SOFTWARE QUALITY ASSURANCE

This section provides SQA guidance specific to digital systems and system components. This

guidance should be considered in conjunction with Sections 5.1 and 5.2 of this Guide. The

definition of “digital” to be used here is found in IEEE-STD-24765, Systems and Software

Engineering Vocabulary, “pertaining to data that consists of digits as well as to processes and

functional units that use the data.”

SQA for digital systems is an expanding and complex area. Among the available references on

this topic is DOE-STD-1195, Design of Safety Significant Safety Instrumented Systems Used at a

DOE Nonreactor Nuclear Facilities. A particularly useful tool in this Standard is the crosswalk

of recommended implementing standards for each of the SQA work activities specified in DOE

O 414.1D. Acceptable industry references found in this crosswalk include ANSI/ISA 84.00-01,

Functional Safety: Safety Instrumented Systems for the Process Industry Sector; and ANSI/IEEE

STD 7-4.3.2, IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear Power

Generating Stations.

The emphasis of this section of the Guide is on SSS that performs monitoring or control

functions. However, this guidance may also be considered for other applications using a graded

approach.

6.2.1 Digital System Identification

Identifying digital system software is an important step in digital system SQA. In many systems,

such as programmable controller-based facility control systems, the identification and use of

80 ANSI/ANS 10.7-2013, Non-Real-Time, High-Integrity Software for the Nuclear Industry – Developer

Requirements, ANSI/ANS, March 2013.
81 Sargent, op. cit.

50 DOE G 414.1-4A

 XX-XX-2015

digital software is apparent. However, in other systems it may not be readily apparent whether

the device relies on software many devices on the market today that did not previously use

software now use it.

To illustrate: in November 1993, a power station’s load sequencer for an emergency diesel

generator failed to automatically load safety-related equipment onto the emergency bus.
82

 The

incident occurred following replacement of electromechanical time/relays with microprocessor-

based time/relays. Inadequate qualification and commercial grade dedication of the new digital

component led to the failure. In July 2010, a failure occurred in a safety-significant PLC

processor module for a tritium air monitor. It was later discovered that notifications of defective

firmware identified some, but not all, of the defective processors. The defective firmware caused

the incident.
83

Because of the increase of such components in the nuclear industry, industry is using the term

“embedded digital device” (EDD). Such a device consists of one or more electronic parts that (a)

require the use of software, software-developed firmware, or software-developed logic, and (b) is

integrated into equipment to implement one or more system safety functions. EDDs include

digital components with executable code or software-developed logic that is permanent or semi-

permanently installed within the device. EDDs include programmable logic devices (PLD), field

programmable gate arrays, application-specific integrated circuits, erasable programmable read-

only memory, electrically erasable programmable read-only memory, and complex (PLD).

6.2.2 SQA for Digital System Design

As referenced in DOE-STD-1195, ANSI/ISA-84.00.01 is a valuable reference digital system

design. Key digital system design SQA for digital systems design should include these concepts:

 Isolation: Critical components should be separated from each other to preclude

undefined and/or unintended interactions. Options include encapsulation, information

hiding, and formal interfaces to prevent unintended software execution or malfunction.

Safety systems should be separated from non-safety systems where possible. Barrier

requirements should be used to prevent non-safety functions from interfering with safety

functions.

 Independence/Diversity: Independent, diverse systems should be employed where the

stimuli originate from and are handled by separate components with different designs,

independent hardware inputs and independent software modules. Note that because

82 U.S. Nuclear Regulatory Commission Information Notice No. 94-20, “Common-cause Failures due to Inadequate

Design Control and Dedication,” March 17, 1994
83 U.S. Department of Energy, Office of Health, Safety and Security Safety Advisory for Software Quality

Assurance, Advisory No. 2010-08, “Firmware Defect in Programmable Logic Controller,” October 2010.

DOE G 414.1-4A 51

DRAFT XX-XX-2015

51

different manufacturers may use the same processor or software, common mode failures

may not be averted simply by buying from several component manufacturers.

 Fail-Safe Design: Component should be designed to become inoperable in a safe mode

without compromising isolation features.

 Incompatibility/Longevity: Systems should be designed to ensure integrated

compatibility throughout the life-cycle. Note that replacement components such as

sensors, logic devices, and control devices may contain upgraded software or require

upgraded support software. In some cases, upgrades may introduce new embedded

software that was not in the original component. The replacement software/hardware

should be compatible with existing software and hardware.

 Multiple/Common-Cause Failures Multiple/common-cause failures should be evaluated

in the integrated system hazard analysis. The design should prevent such failures.

6.2.3 SQA for Digital System Acquisition

In DOE facilities, many digital systems are acquired from suppliers. The guidance below for

digital systems should be considered for the acquisition of items or services.

6.2.3.1 Software Identification

The purchaser should attempt to determine the presence of software in components and ensure

compatibility of software found with existing hardware, software and environmental conditions.

Procurement documentation and specifications should require the supplier to state whether

software is embedded in the procured items. If so, the supplier should have to document the

software sufficiently to support commercial grade dedication (as necessary), operation and

maintenance.

6.2.3.2 Commercial Grade Dedication (CGD)

The acquisition of commercial grade items for digital systems should be consistent with the CGD

process in Section 6.3.

6.2.3.3 Electromagnetic Compatibility (EMC)

The EMC of original equipment may not support reliable operation of new equipment containing

EDD. Conversely, the EMC characteristics of new equipment containing EDDs may be

insufficient to support continued, reliable operation of nearby unmodified equipment. In both

cases, the digital systems should be evaluated and tested in the intended environment (or

simulated environment) prior to placing them into service.

52 DOE G 414.1-4A

 XX-XX-2015

6.2.3.4 Pre-Operational Testing

Many digital system acquisitions are replacement of components in existing, operating systems.

Acquisitions should therefore emphasize testing prior to placing the digital component/system in

operation. Testing should start with off-site bench/factory testing followed by on-site testing,

preferably in actual operating environments or if not possible, in a simulated operating

environment. For onsite testing of systems that will eventually use hazardous materials, onsite

tests should be performed prior to introduction of the material (“cold-tested”).

6.2.4 SQA for Digital System Use and Maintenance

Consider these factors when establishing SQA requirements for use and maintenance of digital

systems:

 Configuration management should be used for the digital system’s component software

and hardware to promote system compatibility.

 Controls of both physical and electronic access to the digital system and data should be

used to prevent unauthorized access and secure the system from electronic

vulnerabilities.

 Training of engineers and operations and maintenance personnel should be provided on

digital system SQA; training should include awareness of potential EDD in new systems

or replacement components in existing systems.

 Well-designed, periodic in-use tests and assessments should be performed to identify

issues, including those that may arise from unintended cumulative effects of safety or

interconnected digital system changes.

 Controlled and integrated software and hardware retirement should be used to ensure

that compatibility is retained among all systems.

6.3 COMMERCIAL GRADE DEDICATION OF COMPUTER PROGRAMS

6.3.1 Introduction

Commercial grade dedication (CGD) consists of qualifying for use items not designed,

developed, or manufactured in accordance with the requirements of ASME NQA-1. CGD is part

of the acquisition process, used to provide reasonable assurance that the computer program or

service will perform its intended safety function in spite of pedigree deficiencies.

For computer codes, CGD involves comparing intended functions with the supplier’s design to

verify that the code meets functional requirements, critical characteristics, and established

acceptance criteria. Detailed requirements of the CGD process can be found in various versions

DOE G 414.1-4A 53

DRAFT XX-XX-2015

53

ASME-NQA-1.
84,85

 Additional guidance is available in Electric Power research Institute (EPRI)

TR-1025243
86

, EPRI TR-106439
87

 and DOE’s Office of Environmental Management Guidance

for Commercial Grade Dedication, April 2011. This section highlights some of the important

concepts used in performing CGD for computer programs.

The determination of critical performance characteristics is essential to the CGD process. This

determination is normally made by the organization responsible for the CGD. The dedicating

entity can be the manufacturer, a third-party organization, the purchaser, or user facility technical

staff.

6.3.2 Approach

Computer program dedication proceeds in two steps, termed technical evaluation and

acceptance. During the technical evaluation phase, CGD documentation is developed to

establish the approach, anticipated activities, and methods. During the acceptance phase,

specified methods of verification are applied to ensure that the critical characteristics for

acceptance (CCFA) meet the specified acceptance criteria. Acceptance is documented by the

individual who performed the verification.

6.3.3 Dedication of Commercial Grade Computer Programs

Organizations planning to use procured COTS computer codes not developed to ASME NQA-1

requirements should perform the following tasks to meet CGD requirements:

 Determine the safety function that the computer program is has to perform;

 Determine the capabilities, application domain, and limitations for the program’s

intended safety function;

 Identify and document critical characteristics and acceptance criteria;

 Select the dedication method; and,

 Generate instructions for use within the limits of the dedicated capabilities.

84 ASME NQA-1-2008/NQA-1a-2009, op. cit., Subpart 2.7 and Subpart 2.14
85 ASME NQA-1-2012 Subpart 2.7, Subpart 2.14 and Subpart 3.2-2.14
86 EPRI TR-1025243, Plant Engineering: Guideline for the Acceptance of Commercial-Grade Design and Analysis

Computer Programs Used in Nuclear Safety-Related Applications.
87 ERPI TR-106439, Plant Engineering: Guideline on Evaluation and Acceptance of Commercial Grade Digital

Equipment for Nuclear Safety Applications.

54 DOE G 414.1-4A

 XX-XX-2015

6.3.4 Technical Evaluation and Acceptance

6.3.4.1 Technical Evaluation Phase

In the technical evaluation phase, all safety functions should be identified and specified in the

CGD documentation. Safety functions are defined as functions the computer program performs

to ensure safety. The safety function may be, and often is, a subset of the computer program’s

overall functions. The critical characteristics to be satisfied for acceptance and the methods for

verifying acceptance should also be identified in the CGD documentation.

Commercial grade computer codes can have numerous design characteristics that are related to

composition, identification, or performance and may or may not impact a safety function. Item

characteristics include product identification characteristics and other characteristics that are

inherent to the item’s design but are not required or used in the purchaser’s application to support

the safety function. The critical characteristics for design (CCFD) are those design

characteristics that are important to the performance of the computer code that allows it to

perform its safety function. However, it is not necessary to verify all design characteristics

and/or CCFD to provide reasonable assurance that the computer code will perform its intended

safety function. CCFA should be identifiable and measurable attributes of the computer program

that, when verified, will provide reasonable assurance that the computer program will perform

the intended safety function when required. Reasonable assurance is considered to have been

provided when, in the opinion of the responsible engineer, a sufficient number of CCFD and

computer program characteristics have been verified and documented as CCFA to provide

sufficient evidence that the computer program will be capable of performing its safety function.

Critical characteristics fall into five categories:

 Computer program characteristics that uniquely identify the computer code being

dedicated;

 Host system characteristics of the host hardware and computer code operating

environment required for code execution;

 Interface characteristics of the inputs, outputs and user interface;

 Computer program characteristics of the computer program relative to performance,

failure modes and functionality; and

 Vendor characteristics for vendor support, vendor qualifications and vendor quality

assurance program.

CGD documentation should identify the cognizant design authority assigned to develop CGD

documentation, perform the technical evaluation, generate the Requirements Traceability Matrix,

and identify critical characteristics in the host system and interfaces.

DOE G 414.1-4A 55

DRAFT XX-XX-2015

55

6.3.4.2 Acceptance Phase

Acceptance should be based on documented acceptance criteria, supplier information, quality

history, and degree of standardization. There are four methods, identified below, which should

be used to verify that critical characteristics have been met and that the computer code meets all

requirements. At least two or more of these methods should be used as specified in the CGD

documentation to verify the acceptance criteria of each critical characteristic.

Method 1 - Special Tests, Inspections, or Analyses

Special tests, inspections, or analyses should be conducted either individually or in combination

before or after receipt of the computer code, to verify conformance with the acceptance criteria.

Method 1 is particularly useful when:

 Critical characteristics can be verified with tests/inspections;

 Data to verify critical characteristics is available in existing documents such as

specifications, drawings, computer code life cycle documents, instruction manuals, and

catalogs;

 The computer code does not include functionality beyond the safety functions; or

 Post-installation tests in the environment can be conducted.

Method 2: Commercial Grade Survey

A commercial grade survey assesses a supplier’s procedures and controls related to the

program’s critical characteristics. The survey should be performed at the supplier’s facility and

should be completed prior to issuing the purchase order for the computer program. A survey of a

supplier may be appropriate under the following circumstances:
88

 The supplier/manufacturer has implemented what appears to be appropriate, documented

controls over the critical characteristics;

 Multiple computer code items are frequently procured from the same supplier; or

 Critical characteristics are not easily verified after receipt.

Method 3 - Source Verification

Source verification is a method of acceptance conducted at a supplier's location during program

development. Source verifications should include activities such as witnessing the development

88 DOE, EM Guidance for Commercial Grade Dedication, April 2011, Section 2.2.2

56 DOE G 414.1-4A

 XX-XX-2015

of the computer program, performance tests, or final inspections, as applicable. It should also

include verification of the supplier's design and the implementation of process controls as

applicable to the identified critical characteristics. Source verification may be appropriate under

the following circumstances:

 In-process verification of one or more critical characteristics is needed;

 Non-conformances have been detected during prior receipt inspections;

 Problems or deficiencies are known to exist in the supplier's QA program; or

 Computer code being procured is the first of its kind being developed.

Method 4 - Acceptable Supplier Item or Service Performance Record

This method of acceptance is based on the demonstrated and documented past performance of a

supplied, similar computer program over a period of time. This method of acceptance should be

supported by the use of one of the other three methods. Method 4 should not rely on a single

source of information, and should include a large data set of successful historical performance of

the computer program. Method 4 may be appropriate in the following circumstances:

 Critical characteristics are not easily verified after receipt;

 It can be verified that the performance data used is directly applicable to the verification

of critical characteristics specific to the intended application;

 The performance record is from similar conditions of service, environmental conditions,

failure modes, maintenance programs, testing, or other conditions equivalent to the

intended application of the computer program; or

 Monitored performance of the computer code has been installed and operated in a similar

environment as the intended facility.

6.4 SOFTWARE SECURITY ASSURANCE

6.4.1 Introduction

Software security assurance provides a level of confidence that software is free from exploitable

design vulnerabilities. Potential software vulnerabilities include those maliciously inserted into

the software and those inadvertently inserted during the software life cycle. Assurance is

achieved by planned, systematic processes and assessments to confirm compliance with design

requirements for software security.

Secure software is designed, configured, implemented, and supported so that it can: 1) continue

operating correctly in the presence of most attacks, by either resisting exploitation of weaknesses

or by tolerating the errors that result from such exploits; and 2) limit the damage resulting from

DOE G 414.1-4A 57

DRAFT XX-XX-2015

57

any errors caused by attack-triggered weaknesses and recover as quickly as possible from such

errors.

6.4.2 Methodology for Designing and Implementing Secure Software

Design and implementation of software should include establishing a software security assurance

program that ensures secure software is properly developed and used throughout its life-cycle.

An effective software security assurance program should address the following areas:

 Use of secure software architecture/design objectives and design principles. These

include:

o Architectural design that eases creation and maintenance of an assurance case.

o Architectural design that eases traceability, verification, validation, and evaluation.

o Architectural design that eliminates possibilities for violations.

o Architectural design that ensures certification and accreditation of the operational

system.

o Architectural design that provides predictable execution behavior.

o Architectural design that avoids and/or works around any security-endangering

weaknesses in the environment or development tools.

o Minimization of the number of safety-related components to be trusted.

o A system that is designed to do only what the specification calls for and nothing else.

o A system that is designed to tolerate security violations.

o A system that is designed to avoid security risks to other systems in the environment.

o A system that is designed to survive potential attacks.

 Specification of software security design requirements that cover both overt functional

security (e.g., use of applied cryptography) and emergent security properties, as revealed

by abuse cases and attack patterns. These requirements should address all known threats

applicable to the design and implementation processes for the software being developed

or modified, such as those from off-shoring, outsourcing, and insiders.

 Establishing a software security specification that builds abuse cases that describe a

software system’s behavior when under attack, in order to clarify what areas and

components of a software-based system should be protected from which threats and for

how long. This specification should also: 1) describe potential protection measures

against issues such as software development errors, 2) guide software security

implementation, 3) assist in the monitoring of software security postures, and 4) help

make software-based systems more adaptable to the changing landscape of software

security.

 Enlisting system engineering techniques, such as defense-in-depth (DID) measures (e.g.,

application layer firewalls, XML security gateways, sandboxing, code signing) and

secure configurations, with operational security practices, including patch management

58 DOE G 414.1-4A

 XX-XX-2015

and vulnerability management. Application security DID measures operate

predominately by using: 1) boundary protections to recognize and block attack patterns

and 2) constrained execution environments to isolate vulnerable applications, thus

minimizing their exposure to attackers and their interaction with more trustworthy

components. Operational security measures focus on reducing the number or exposure of

vulnerabilities in applications by repeatedly reassessing the number and severity of

residual vulnerabilities and the threats that may target and exploit them, so that DID

measures can be adjusted to maintain their level of effectiveness.

 Development of a secure software configuration management (SSCM) system that

establishes traceability of software development activities as part of the SCM system

described in Section 5.2.3 of this Guide. This system should ensure that the management

role for software development activities is separate from the roles for development or

testing of software. At a minimum, the development artifacts of potentially high-

consequence software should be treated as items subject to the SSCM system. The

SSCM system should consider implementation of the following software security

practices:

o Access control for software development artifacts, including but not limited to threat

models and use/misuse/abuse cases; requirements, architecture, and design

specifications; source code and binary executables; test

plans/scenarios/reports/oracles, code review findings, and vulnerability assessment

results; installation/configuration guides, scripts, and tools; administrator and end

user documentation; Independent V&V documents; and security patches and other

fixes;

o Time stamping and digital signature of all configuration items upon check-in to the

SSCM system;

o Base-lining of all configuration items before they are checked out for review or

testing;

o Storage of a digitally signed copy of the configuration item with its configuration

item progress verification report;

o Separation of roles/access privileges and least privilege enforcement, for SSCM

system users;

o Separation of roles and duties (developing, testing, etc.) within the software

development team;

o Authentication of developers and other users before granting access to the SSCM

system;

o Audit of all SSCM system access attempts, check-ins, check-outs, configuration

changes, traceability between related components as they evolve, and details of other

work done;

o Flexible but carefully controlled delegation of SSCM administrator privileges;

o No remote access, or remote access only via encrypted, authenticated interfaces;

DOE G 414.1-4A 59

DRAFT XX-XX-2015

59

o Reporting of differences between security aspects of previous and subsequent

versions and releases;

o Ability to assign access permissions to users and to restrict access to the repository

based on those permission assignments;

o Ability to limit read and write accesses (check-ins and check-outs) to a single

directory; and

o Tracking for all fixes, patches, updates, and new releases by the suppliers of

commercial off-the-shelf and open source software components.

 Writing procedures for the acquisition and/or development of software that include

requirements for testing and analysis of software. These procedures have the goal of

exposing and rectifying potential software security vulnerabilities prior to its use.

 Performing quality assurance of key software security activities throughout the software

development life cycle in order to provide assurance that software security requirements

are adequate. As a minimum, software security activities that should be subjected to QA

reviews and controls are:

o Assessing development risks (i.e., those related to running a development project,

which would typically include risks associated with business requirements, benefits,

technology, technical performance, costing, and timescale);

o Ensuring that security requirements have been defined adequately;

o Ensuring that security controls agreed to during the risk assessment process (e.g.,

policies, methods, procedures, devices or programmed mechanisms intended to

protect the confidentiality, integrity or availability of information) have been

developed and implemented;

o Determining whether security requirements are being met effectively; and

o Establishing security operations that monitor the behavior of a software system for

indications of attacks and exploits against the software. Knowledge gained through

monitoring attacks should be fed back into the activities described above and those

listed in Section 5.6.3 of this Guide on testing and analysis of software.

 Utilization of software security training that provides stakeholders adequate security

education in software development. Training concepts include security awareness,

knowledge of attacks on previous related applications, understanding of attackers’

interests, and knowledge of secure development practices.

6.4.3 Testing and Analysis of Software for Security Vulnerabilities

Software security testing and analysis should occur throughout the software development life

cycle and should include activities such as:

 Static analysis/review of source code that uses static analysis tools to detect common

vulnerabilities.

60 DOE G 414.1-4A

 XX-XX-2015

 Direct code analysis that extends static analysis by using tools that focus on verifying the

code’s overall conformance to a set of predefined properties, which can include security

properties such as non-interference and separability, persistent bisimulation-based non-

deducibility on compositions (BNDC), non-inference, forward-correctability, and non-

deductibility of outputs.

 Source code fault injection, a form dynamic analysis in which the source code is

“instrumented” by inserting changes, then compilation and execution of the instrumented

code to observe the changes in state and behavior that emerge when the instrumented

portions of code are executed.

 Fault propagation analysis that involves two techniques for fault injection of source code:

extended propagation analysis and interface propagation analysis.

 Risk analysis of the software architecture and design that includes documenting

assumptions and identifying possible attacks, and uncovering and ranking architectural

flaws for mitigation. Recurrent risk tracking, monitoring and analysis should be ongoing

throughout the software development life cycle.

 The use of software security checklists.

 Implementation of “canned” black box tests offered by automated application security

and penetration tests with tools and solutions that are driven by the results of the

architectural risk analysis.

 Risk-based security testing using standard functional testing techniques. Risk-based

security testing of software relies on test scenarios that are based on attack patterns.

 Independent software security reviews which analyze, assess, and/or test the software’s

design and implementation.

6.4.4 Security Controls

Security controls for information systems and organizations consist of safeguards and

countermeasures to: (a) protect the confidentiality, integrity and availability of information

processed, stored and transmitted by those systems and organizations, and (b) satisfy a set of

defined security requirements.

The types of activities an organization should include for such controls are:

 Identification of software types;

 Risk assessment of their systems to determine the security categorization;

 Selection of security controls required to mitigate risk throughout the system life-cycle;

 Determination of the required level of assurance needed for confidence that security

controls are achieving intended goals; and

 Risk management and continuous monitoring and maintenance to adjust risk according to

the changing threat landscape.

DOE G 414.1-4A 61 (and 62)

DRAFT XX-XX-2015

61

Pursuant to DOE O 205.1B, DOE Cyber Security Program, guidance for security controls for all

U.S. federal information systems, except those relating to national security, can be located in

National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53, Security

and Privacy Controls for Federal Information Systems and Organizations. Guidance for

security controls for industrial control systems is provided in NIST SP 800-82, Guide to

Industrial Control Systems Security. The Committee on National Security Systems Instruction

No. 1253, Security Categorization and Control Selection for National Security Systems, provides

guidance on security controls for national security systems, with Attachment 1 providing

guidance for industrial control systems.

Nuclear Regulatory Commission (NRC) Regulatory Guide 5.71, Cyber Security Programs for

Nuclear Facilities, provides guidance on satisfying 10 CFR §73.54, Protection of Digital

Computer and Communication Systems and Networks. There are also numerous industry best

practices and guidance documents that address themes such as reference architectures, layered

security, defense in depth, and product specific security features.

Security categorization examples for various types of software are provided in Tables 6.4-1

through 6.4-3.

Table 6.4-1, Security Categorization for Acquired Low-Impact OSW

Activity Guidance

Assess risk, security categorization NIST 800-37, Federal Information Processing

Standard (FIPS) 199

Choose security controls and assurance level FIPS 200, NIST 800-53 tailored baseline

Continuously monitor and maintain NIST 800-137

Table 6.4-2, Security Categorization for Custom High-Impact OSW

Activity Guidance

Assess risk, security categorization NIST 800-37, FIPS 199

Choose security controls and assurance level NIST 800-53, Committee on National Security

Systems Instruction (CNSSI) 1253 tailored baseline

Continuously monitor and maintain NIST 800-137

Table 6.4.-3, Security Categorization for Configurable High-Impact OSW

Activity Guidance

Assess risk, security categorization NIST 800-37, FIPS 199

Choose security controls and assurance level FIPS 200, NIST 800-53 tailored baseline

Continuously monitor and maintain NIST 800-137

DOE G 414.1-4A 63 (and 64)

DRAFT XX-XX-2015

63

7. ASSESSMENT

7.1 GENERAL

DOE assessment requirements in 10 CFR Part 830 Subpart A and DOE O 414.1D should be

applied to software management and control issues.

7.2 DOE AND CONTRACTOR ASSESSMENTS

DOE assesses the effectiveness of its actions in resolving problems with software management

and control. DOE also evaluates the adequacy and implementation effectiveness of DOE and

contractor software management and controls.

Contractors are expected to assess their software management and controls in accordance with

DOE O 414.1D and their QAPs.

A suggested model criteria review and approach document (CRAD) for safety software is

provided in Appendix E. This model contains software qualification assessment criteria for

assessing the safety software

DOE G 414.1-4A A-1

DRAFT XX-XX-2015

A-1

APPENDIX A. MANAGEMENT OF SOFTWARE BY TEN QA CRITERIA

This Appendix discusses the applicability of the ten software quality assurance (SQA) work

activities with respect to the ten quality assurance (QA) criteria as described in Department of

Energy (DOE) Order (O) 414.1D, Quality Assurance.

This Appendix addresses the application of ten quality assurance (QA) criteria in Department of

Energy (DOE) Order (O) 414.1D, Quality Assurance with respect to the ten software quality

assurance (SQA) work activities described in this Guide.
 89

 However, the QA criteria are broad

enough to cover several SQA work activities and only the most significant work activities have

been identified.

Criterion 1 – Management/Program

(a) Establish an organizational structure, functional responsibilities, levels of authority, and

interfaces for those managing, performing, and assessing the work,

(b) Establish management processes including planning, scheduling, and providing

resources for the work.

SQA requirements are addressed in the contractor’s quality assurance program (QAP), which

may be a site-wide QA document or in other documents. The contractor’s QAP should

document methods for planning, performing, assessing, and improving the adequacy of software

items and SQA work activities. Basic elements that should be included in an SQA program

include:

 Organizational structure, roles and responsibilities;

 Software engineering methods including risk-based approach;

 Minimum required documentation;

 Standards, conventions, techniques, or methodologies for software development,

acceptance testing, and compliance;

 Required software reviews; and

 Resource planning and scheduling.

For additional guidance, refer to Section 5.2.1, Software Project Management and Quality

Planning and Section 5.2.2, Software Risk Management.

Criterion 2 – Management/Personnel Training and Qualification

(a) Train and qualify personnel to be capable of performing their assigned work.

89 Adopted from SQASG-TP-10-01-REV. 1, A Systematic Approach to Implementing the Quality Requirements of

DOE O 414.1D for Software

A-2 DOE G 414.1-4A

 XX-XX-2015

(b) Provide continuing training to personnel to maintain their job proficiency.

This criterion should be integrated into the QAP section on qualifications and training. Requisite

qualifications and training should be established for all personnel associated with the

development, acquisition, configuration, management, use, oversight, and retirement of software.

Software development personnel should be qualified to perform all software life-cycle activities

either through prior experience, classroom training, or on-the-job training. Software training is

especially important for developmental personnel to ensure that new software correctly handles

real-world phenomena and engineering systems. SQA personnel should be qualified through

experience and/or training to perform QA activities such as testing, verification, validation, and

audits.

Software user training can be accomplished through classroom demonstrations, laboratory

exercises, online help functions, and study of the user’s manual. User training should describe

features, functions, and limitations of the software and how to navigate through the program

prompts. It should also include information on error messages resulting from improper input and

user mistakes.

For additional guidance, refer to Section 5.2.10, Training Personnel in the Design, Development,

Use, and Evaluation of Software.

Criterion 3 – Management/Quality Improvement

(a) Establish and implement processes to detect and prevent quality problems

(b) Identify, control, and correct items, services, and processes that do not meet established

requirements.

(c) Identify the causes of problems, and include prevention of recurrence as a part of

corrective action planning.

(d) Review item characteristics, process implementation, and other quality related

information to identify items, services, and processes needing improvement.

Corrective action procedures should ensure that the causes of software problems are identified

and corrective actions taken to:

 Identify, evaluate, document, and correct the problem;

 Assess problems for their impact on past and present uses of the software;

 Develop changes to software in accordance with established design controls; and

 Provide necessary information to affected users.

Software that does not meet its performance requirements, or produces errors or anomalies,

should be withdrawn from use until such problems are resolved.

DOE G 414.1-4A A-3

DRAFT XX-XX-2015

A-3

For additional information, refer to Section 3.2.2, Continuous Improvement, Measurement, and

Metrices, Section 5.2.8, Verification and Validation and Section 5.2.9, Problem Reporting and

Corrective Action for additional guidance.

Criterion 4 - Documents and Records

(a) Prepare, review, approve, issue, use, and revise documents to prescribe processes,

specify requirements, or establish design.

(b) Specify, prepare, review, approve, and maintain records.

Activities that affect software quality should be performed in accordance with documented

instructions, plans and procedures. The instructions and procedures should define the processes

for performing these activities, establish requirements and responsibilities, and be reviewed and

approved by management. Records that furnish documentary evidence of software quality should

be maintained in a dedicated storage facility or embedded in a site-wide records management

system.

For additional guidance, refer to Section 5.2.1, Software Project Management and Quality

Planning and Section 5.2.3, Software Configuration Management,

Criterion 5 – Performance/Work Processes

(a) Perform work consistent with technical standards, administrative controls, and other

hazard controls adopted to meet regulatory or contract requirements using approved

instructions, procedures, or other appropriate means.

(b) Identify and control items to ensure proper use.

(c) Maintain items to prevent damage, loss, or deterioration.

(d) Calibrate and maintain equipment used for process monitoring or data collection.

Performance of Work

The first requirement in this criterion requires use of technical standards and other hazard

controls to meet regulatory or contractual requirements. DOE O 414.1D requires the selection of

a consensus standard or set of standards which should be used for performing the tasks

associated with SQA work activities.

Additionally, instructions or procedures should be created and used for software development,

acquisition, and configuration. These instructions and procedures should be reviewed and

approved by management. The instructions and procedures should describe the applicable SQA

work activities for safety and other software (OSW). The need for and the level of detail in such

written instructions and procedures should be based on using a graded approach, on the safety

A-4 DOE G 414.1-4A

 XX-XX-2015

and mission significance (e.g., grading levels), complexity of the task, and the development

environment.

Identify and Control Items

Software configuration management should be the primary work activity for implementing this

requirement. All software and associated hardware items should be identified and controlled.

This requirement covers computer programs and associated software tools and system software,

software development and testing procedures, user and other related documents, and data.

Controls should be established to assure that only correct and accepted items are used and

installed.

Prevent Damage, Loss or Deterioration of Items

Controls should be established for protecting software from unauthorized access or inadvertent

damage or degradation during all phases of the software life-cycle. These controls should

address both the security of the computer system and the critical data that reside on that system.

Processes should also be defined to identify the media to be controlled for each software product,

the documentation required to store the media, and the copying and restoration process.

Calibrate and Maintain Process Monitoring and Data Collection

Testing and in-process monitoring of software should be performed according to an established

QAP and procedures. Testing tools, system performance data and computer program

performance measurement tools should be identified and qualified for their intended use. A

tracking and reporting system on the status of the monitoring, control of software components

should be established. Any modification to computer programs and related documentation

should be reviewed before implementation by qualified and knowledgeable personnel.
90

Software embedded in monitoring and data collection equipment (“burned in” the integrated

circuit) during manufacturing should have a version identifier. The version identifier should be

noted and tracked as specified by the software configuration management work activity.

For additional guidance, refer to Section 5.2.6, Software Design and Implementation, Section

5.2.7, Software Safety Analysis and Safety Design Methods and Section 5.2.3, Software

Configuration Management

90 IAEA Technical Reports Series No. 397, Quality Assurance for Software Important to Safety, IAEA, 2000.

DOE G 414.1-4A A-5

DRAFT XX-XX-2015

A-5

Criterion 6 – Performance/Design

(a) Design items and processes using sound engineering/scientific principles and

appropriate standards.

(b) Incorporate applicable requirements and design bases in design work and design

changes.

(c) Identify and control design interfaces.

(d) Verify or validate the adequacy of design products using individuals or groups other

than those who performed the work.

(e) Verify or validate work before approval and implementation of the design.

The design of software should be defined, documented, controlled, verified and approved.

Software should be designed using the most recent and sound coding principles and appropriate

industry or government consensus standards. Applicable software requirements should be

specified on a timely basis and translated into software design. Software design interfaces should

be identified and controlled. The adequacy of software design and associated coding should be

independently verified or validated by others who did not perform the design or the coding prior to

its approval for use. The adequacy review should cover three phases of software development:

requirements identification, design, and implementation.

Requirements Identification Phase

This phase consists of developing a software requirement specification (SRS) to defines and

documents relevant functional, performance, safety, reliability and maintainability

requirements. Design input and constraints, as well as interfaces and response to anticipated

errors and failure modes, should also be defined in the SRS. These requirements should be

traceable throughout the software development life-cycle.

Design Phase

The design phase consists of developing and documenting a detailed description of the computer

program, the overall structure of the software, and the reduction of the overall structure into

physical solutions. The same steps and processes for designing the software should apply

regardless of the grade level or classification. However, the level of detail and required effort

may vary greatly depending on the software classification category or grade level. The

programming logic and data structures should be determined and clearly identified. The level of

detail for documenting the design and the review of the documentation should be consistent with

the risk associated with the software failure category or grading level.

A-6 DOE G 414.1-4A

 XX-XX-2015

11

Implementation Phase

The implementation phase consists of developing the source code (design output) using a

standard programming language or other form suitable for compilation or translation into an

executable code. The design, as described in the software design description (SDD), should be

used as the basis for software development and should be modified to reflect modifications

identified during the implementation phase.

For additional guidance, refer to Section 5.2.6, Software Design and Implementation, Section

5.2.8, Verification and Validation, Section 5.2.5 Software Requirements Identification and

Management and Section 5.2.7, Software Safety Analysis and Safety Design Methods.

Criterion 7 – Performance/Procurement

(a) Procure items and services that meet established requirements and perform as specified.

(b) Evaluate and select prospective suppliers on the basis of specified criteria.

(c) Establish and implement processes to ensure that approved suppliers continue to provide

acceptable items and services.

Software procurements may involve acquisition of software product or services. Software

products may include a software package custom-developed to specific requirements of the

procuring organization, or a software package previously developed (e.g., commercial off-the-

shelf). Appropriate controls should be placed on the procurement process to ensure that it clearly

states or references requirements and acceptance criteria. These should be based on a flow-down

of the software design requirements for custom software.

Acquisition documents should specify applicable QA requirements for contracted software

development and software services, and should identify all documentation, plans, and procedures

to be supplied by the vendor. Vendor-supplied documentation should include, as a minimum:

 requirements documentation;

 design and implementation documentation;

 inspection and testing documentation;

 change documentation; and

 user documentation.

Refer to Section 5.2.4, Procurement and Supplier Management, of this Guide for additional

information.

DOE G 414.1-4A A-7

DRAFT XX-XX-2015

A-7

Criterion 8 – Performance/Inspection and Acceptance Testing

(a) Inspect and test specified items, services, and processes using established acceptance

and performance criteria.

(b) Calibrate and maintain equipment used for inspections and tests.

The inspection and acceptance testing of software should include objective evidence of the review

of software activities, life-cycle documentation, and test reports to ensure that the software:

 adequately and correctly performs all intended functions;

 properly handles abnormal conditions and events; and

 does not perform any unintended function that, either by itself or in combination with

other functions, can degrade the intended output of the software.

The inspections may range from a group of subject matter experts (SME) conducting a formal

document review meeting to a single SME performing a desktop check of the documentation or

the code. Inspection and testing activities should be performed by a competent individual or

group independent from the design and implementation group.

Configuration-controlled items should be under a configuration change control procedure prior to

acceptance testing. Acceptance testing should be planned and performed for all documented

software design requirements.

Test plans, test cases, and test results should be documented, reviewed, and approved prior to use

of the software, and then placed under configuration change control. For lower-grade level

software, the test plans, cases and results may be combined into a single document reviewed after

completion of acceptance testing. The review report should be signed by the authors. Issues

discovered during testing should be documented and dispositioned prior to approval of the test

results. For software at high grade levels, each issue and its disposition should be documented.

Software modifications should be subject to selective regression testing to:

 Detect errors introduced during the modification of the systems or system components;

 Verify that the modifications have not caused unintended adverse effects; and

 Verify that the modified systems or system components still meet the specified

requirements.

For additional guidance, refer to Section 5.2.8, Verification and Validation.

Criterion 9 – Assessment/Management Assessment

A-8 DOE G 414.1-4A

 XX-XX-2015

Ensure that managers assess their management processes and identify and correct problems

that hinder the organization from achieving its objectives.

Management assessments should be performed periodically to ensure that the organization is

meeting its mission objectives. Management decisions about how a software project is

implemented can have significant effects on the safety and reliability of the software.

Performing such assessments is one of many ways to identify strengths and improvement

opportunities, and to also correct problems in the software development process.

The management assessment process is an integral part of the overall assessment process.

Management personnel involved in the assessment process can provide the organization a more

comprehensive perspective in understanding the broader implications of improvement

opportunities and corresponding corrective actions. These assessments are self-initiated and self-

conducted, thereby allowing the organization to identify problems and initiate corrections prior to

being subjected to external review. Management assessments could focus on assessing the

overall SQA program, the corrective action program as it relates to software or any other SQA

element.

Management assessments of software are also critical, since software processes affect not only

the software item they are associated with but also any other activities that rely on software. In

addition, software processes crosscut other project objectives, such as schedule, cost, and

resources, associated with a given project. Reviewing work associated with any software process

is crucial and should be conducted early in the life-cycle of the software. This will ensure that

any identified unaddressed problems are not compounded as the project moves ahead.

Criterion 10 – Assessment/Independent Assessment

(a) Plan and conduct independent assessments to measure item and service quality.

(b) Measure the adequacy of work performance and promote improvement.

(c) Establish sufficient authority and freedom from line management for independent

assessment teams.

(d) Ensure persons who perform independent assessments are technically qualified and

knowledgeable in the areas to be assessed.

Independent assessments can be internally or externally initiated, but they are conducted by a

technically qualified independent organization not involved in the development of the software.

Code development can often be considered a closed process. However, an external review can

lead developers and other staff to see potential problems before the system is deployed

DOE G 414.1-4A A-9 (and A-10)

DRAFT XX-XX-2015

A-9

Independent assessments should address the design of a software-based process control system

or a complex database application that affects the organizational mission, and other similarly-

directed software systems.

Independent assessments are typically risk-informed. Thus, it may not be prudent to perform

independent assessments of lower-grade software when such resources could be better applied to

high-risk software projects. Moreover, high-risk software projects should be conducting

assessments as they progress through the software acquisition or development life-cycle.

Examples of independent types of assessments include:

 Code walkthrough: provides assurance of the fitness for purpose of the algorithm or code

and assesses the competence or output of an individual or team;

 Functional and physical configuration audit: a functional configuration audit ensures that

functional and performance attributes of a configuration item are achieved, while a

physical configuration audit ensures that a configuration item is installed in accordance

with the requirements of its detailed design documentation; and

 Peer review: review by others who have sufficient knowledge in the software. This may

include but not limited to periodic and operational testing of software to confirm that the

software elements are operating as required and provide assurance that the software

meets the program's mission and quality objectives.

DOE G 414.1-4A B-1

DRAFT XX-XX-2015

B-1

APPENDIX B. PROCEDURE FOR ADDING, REVISING OR DELETING

SOFTWARE IN THE DOE SAFETY SOFTWARE CENTRAL REGISTRY

B.1 INTRODUCTION

B.1.1 PURPOSE

The Department of Energy (DOE) Safety Software Central Registry (CR) contains “toolbox

codes.” These qualified codes are used to support safety analysis of DOE facilities. The purpose

of this appendix is to outline a procedure for modifying the CR by adding new codes or updating

existing codes. The procedure ensures compliance with the software quality assurance (SQA)

requirements of DOE O 414.1D, Quality Assurance by providing suitable criteria. Information is

also presented on procedures to (1) revise or update a toolbox code and (2) remove a code from

the CR.

The CR can be accessed at http://energy.gov/ehss/safety-software-quality-assurance-central-

registry

B.1.2 SCOPE

The scope of this procedure includes any software application used by DOE or its contractors for

inclusion in the CR.

B.1.3 FUNCTIONS

Procedures for adding, revising and removing software in the CR are as follows:

Code Sponsor: The code sponsor can be the code’s developer or a user organization. In either

case, this party is responsible for documenting the complete SQA program for the code. The

code sponsor is also responsible for documenting the rationale for listing the subject code in the

CR.

SQA Evaluator: An SQA evaluator should have had no involvement in the development of the

code. Review organizations or individuals should have (a) a thorough understanding of

applicable SQA requirements, (b) expert level knowledge and application experience with the

code in question, and (c) an awareness of the overall context for the use of the subject code in

safety analysis. The SQA evaluator is responsible for documenting the evaluation of the

candidate code, and based on this evaluation, may or may not conclude that the SQA of the code

satisfactorily meets requirements for listing in the CR.

http://energy.gov/ehss/safety-software-quality-assurance-central-registry
http://energy.gov/ehss/safety-software-quality-assurance-central-registry

B-2 DOE G 414.1-4A

 XX-XX-2015

CR Listing Approver: DOE’s Office of Quality Assurance (AU-33) in the Office of Nuclear

Safety (AU-30) reviews and evaluates SQA of the candidate code and makes recommendations

to the Director, AU-30, as to whether the candidate code should be listed in the CR.

Before a formal request for listing a code in the CR, the code sponsor should contact DOE’s

Office of Quality Assurance to review documentation that will have to be submitted in support of

the request.

B.2 PROCESS

B.2.1 ADDING SOFTWARE APPLICATIONS TO THE CENTRAL REGISTRY

In the application, the code sponsor should justify why the code should be listed in the CR. The

justification statement should establish for the candidate code:

 Widespread current use in the DOE complex,

 Potential for other safety-related applications in the DOE complex,

 Documentation is adequate to meet DOE’s SQA requirements, and

 A demonstrated and quantifiable benefit for listing the code in the CR.

The code sponsor may be requested to provide information on the programs and procedures

associated with the development, maintenance, and use of the subject code. The code developer

is expected to provide necessary SQA documentation to address the work activities in DOE O

414.1D, Attachment 4.

Formal documentation to demonstrate that the SQA work activities have been performed is

preferred. However, in cases where the software was not developed using formal SQA

procedures, other less formal forms of documentation such as files, reports, and meeting notes

can provide in the aggregate the desired confirmation.

B.2.1.1 Evaluation Process

The SQA evaluator performs and documents a review of the code, using inputs from the code

developer. In cases where the code developer is unable to supply requested inputs, the SQA

evaluator may consider alternative sources of information such as previous reviews,
91

 older

documentation from the code developer, technical and journal articles, and previous software

comparison studies.

91 If previous reviews are used in whole or in part, the code developer should confirm that the older review results

are still applicable.

DOE G 414.1-4A B-3

DRAFT XX-XX-2015

B-3

Table B-1, Software Quality Assurance Work Activities and Corresponding

Documentation for Demonstrating Compliance

DOE O 414.1D SQA Work Activity SQA Documents

1. Software Project Management and Quality

Planning

­ Software Project Management Plan (SPMP) and/or

­ Software Quality Assurance Plan (SQAP)

­ Software Safety Plan

2. Software Risk Management ­ Various document types can be used to cover risk

management

3. Software Configuration Management ­ Software Configuration Management Plan (SCMP) or

related documents

4. Procurement and Supplier Management ­ Contractual documents or other procurement and use

agreement documentation

5. Software Requirements Identification and

Management

­ Software Requirements Specifications (SRS) or related

document

6. Software Design and Implementation ­ Software Design Description (SDD), Model

Description, Programmer’s Reference Manual, or other

related documents

7. Software Safety ­ SDD

­ Software Safety Analysis documentation

8. Verification and Validation ­ Verification and Validation Report

­ Test Case Description and Outcome Report; Other

testing documents

9. Problem Reporting and Corrective Action ­ Software Error Notification and Corrective Action

Report

10. Training of Personnel in the Design,

Development, Use and Evaluation of Safety

Software

­ User Instructions or User Manuals

­ Training Packages and User Qualification

11. Model Validation and Evaluation ­ Test results and evidence that code output was

compared to experimental results or against equivalent

output from an independent code and differences

resolved

The size of the SQA evaluation effort, whether put forth by one individual or by a team of

subject matter experts, depends on the complexity of the code application. Evaluation of the

SQA work activities covered in Table B-1 above should use a sub-matrix of finer criteria to

adequately evaluate the constituent parts of the requirement. A qualitative ranking of

compliance items, which has been used in the evaluation of current toolbox codes, consists of

applying four terms to define compliance with SQA requirements. These terms are: Yes (meets

requirement), Partial (some but not all criteria are met), No (does not meet requirement), and

N/A (requirement is not applicable). Upon completion of the evaluation of each of the SQA

work activities, the SQA evaluator can review results as a whole and render an overall

B-4 DOE G 414.1-4A

 XX-XX-2015

assessment. The process should lead to documenting findings in a verifiable and objective

manner.

The overall evaluation process is shown schematically in Figure B-1.Table B-2 provides

guidance on evaluating toolbox-equivalent candidate codes, defined as custom-developed

software.

While grading a code as Level C is possible, most candidate codes for the CR will be categorized

as Level A or B.

The SQA evaluations performed on the six initial toolbox codes are a reasonable approximation

of the level of detail desired for SQA evaluation of a new candidate code.

SQA evaluation criteria for adding codes to the CR can be downloaded from the CR website:

(http://energy.gov/ehss/safety-software-quality-assurance-central-registry).

Table B-2. Plan for Evaluation of Candidate Codes for the Central Registry

Step Procedure

1. Review Documentation  Determine that sufficient information is provided by the software developer to

allow proper classification of the software;

 Review developer reports, previous evaluations, and conference and journal

submittals, etc.; and

 Interview code developer.

2. Evaluate Justification

(Rationale) for Including

Software in CR

 Review code sponsor’s documents to determine:

 Widespread use or prospect for significant use of the code across the DOE

complex for safety related applications;

 Methods to ensure proper SQA related information, error reporting, configuration

control and other SQA management interfaces with the CR; and

 Demonstrated and quantifiable benefit for designating the software for the CR.

3. Assess Software Project

Management and

Software Quality

Assurance Plans

 Review SPMP and SQAP for:

 required activities, documents, and deliverables and

 level and extent of reviews and approvals, including internal and independent

review.

 Confirm that actions and deliverables (as specified in the SQAP) have been

completed and are adequate.

 Review engineering documentation identified in the SPMP and SQAP, including:

(1) software risk management documents;

(2) software configuration management plan;

(3) procurement and supplier management documents;

(4) software requirements specifications;

(5) software design, model description, programmer’s reference, and related

documents;

(6) software design and related documents;

(7) verification and validation, test report, and other documents;

http://energy.gov/ehss/safety-software-quality-assurance-central-registry

DOE G 414.1-4A B-5

DRAFT XX-XX-2015

B-5

Step Procedure

(8) software error notification and corrective action reports;

(9) user instructions, user manuals, and training packages/user qualification

documents; and

(10) model validation and evaluation.

4. Assess SQA Work

Activities

 Review SQA documentation against detailed criteria found in DOE O 414.1D

SQA Work Activities:

 software project management & quality planning;

 software risk management;

 software configuration management;

 procurement and supplier management;

 software requirements identification and management;

 software design and implementation;

 software safety;

 verification and validation;

 problem reporting and corrective action;

 training of personnel in the design, development, use and evaluation of safety

software; and

 model validation and evaluation.

5. Document Evaluation of

the code

 Use past evaluation reports as template.

B.2.1.2 Submittal to the Central Registry

Once the SQA evaluation has been conducted and documented, the code may be submitted to the

CR as one of the following cases:

Case 1: The evaluation report indicates that software meets all requisite criteria in the SQA work

activities, and the report makes no recommendations about corrective actions.

Case 2: The evaluation report has identified one or more criteria not met for the subject code;

the code sponsor has made improvements acceptable to the evaluator.

However, the code sponsor can document a compelling technical basis for submitting the code as

“toolbox-equivalent” to the CR despite a failure to meet SQA criteria. The technical basis

should include a code guidance report that points out specific limitations and weaknesses and

provides instructions to the user on informed use of the subject code despite identified flaws and

vulnerabilities.

Guidance reports prepared for the initial six codes designated for the CR may be downloaded

from the DOE SQA website at http://energy.gov/ehss/safety-software-quality-assurance-central-

registry.

http://energy.gov/ehss/safety-software-quality-assurance-central-registry
http://energy.gov/ehss/safety-software-quality-assurance-central-registry

B-6 DOE G 414.1-4A

 XX-XX-2015

Figure B-1, Flow Sheet for Software Evaluation

If all substantive issues in either Case 1 or Case 2 are satisfactorily dispositioned, the code

sponsor may move forward the candidate toolbox code documentation along with the request to

review the evaluation as part of the toolbox code application.

As the CR Listing Approver, the DOE Office of Quality Assurance will review the submittal.

Table B-3 lists several of the key acceptance criteria for rendering a decision to list the candidate

code in the CR. A decision on designation of the candidate code as a toolbox code application

will be communicated to the code developer and evaluator organizations. If the decision is

favorable, the appropriate links will be provided for the code in question, and a general notice

will be posted on the CR Web site. Additional notification methods may be implemented to

ensure broad notification of the changes in the codes listed in the CR.

If, on the other hand, issues with the subject code are irreconcilable, then the code sponsor is

advised not to proceed further with the submittal process. It may be prudent to examine

continued use of the code at the site in question, and explore use of an alternative code, such as

codes currently contained in the CR, for the specific safety application.

1. Review Code
Documentation &
Interview Code
Developer
• Software

development reports
• Previous code

evaluations

2. Evaluate Justification
for Including code (or
new code version) in
CR

4. Document Outcome of Evaluation
Code Evaluation Report
• Compliant areas
• Areas for improvement
• Overall assessment for including

software in CR
• Determine whether suitable for CR

3. Assess Software
Project Management
and Software Quality
Assurance Plans

5. Assess Software Quality Assurance Work Activities
a) Software project management & quality planning
b) Software risk management
c) Software configuration management
d) Procurement and supplier management
e) Software requirements identification and management
f) Software design and implementation
g) Software safety
h) Verification and validation
i) Problem reporting and corrective action
j) Training of personnel in the design, development, use,

and evaluation of safety software

DOE G 414.1-4A B-7

DRAFT XX-XX-2015

B-7

Table B-3, Primary Criteria for Deciding on Inclusion of a Code to the Central Registry

Phase Criterion

1. Rationale for Adding

a Code to CR

a. Widespread use of the code across DOE complex for safety related applications.

b. Methods to ensure proper code information, error reporting, configuration control,

and other SQA management interfaces with the CR.

c. Demonstrated and quantifiable benefit for designating the code as a CR toolbox

code.

2. SQA Technical Basis a. The SQA evaluation document adequately demonstrates that the candidate code has

met all major requisite criteria, and no criterion is evaluated as “No (= not met).” If

remedial tasks were cited before all criteria are considered met, it is determined that

these have been completed.

or

b. The SQA evaluation document has identified one or more criteria not compliant for

the subject code based on the gap analysis. However, a compelling technical basis is

made for submitting the code as “toolbox-equivalent” to the CR. Part of the

technical basis should include a guidance report that points out specific limitations,

weaknesses, and provides instructions to the user on informed use of the subject

code despite identified gaps and other vulnerabilities.

B.2.2 REVISIONS TO CODES LISTED IN THE CENTRAL REGISTRY

In the life-cycle processes associated with most code applications, updates, improvements, and

modifications will be made. A revised code such as a new version may also be submitted for

inclusion in the CR, generally accompanied by removal of the older version.

The same process is followed for a revised code to be placed in the CR as is outlined above for

new code applications. The steps may be summarized as follows.

1. The code sponsor identifies the SQA evaluator organization.

2. The evaluator performs a complete evaluation of all aspects of the new code version,

emphasizing new and revised aspects of the code application.

3. Upon conclusion of the evaluation and issuance of the SQA evaluation, if the code

sponsor decides that the code meets all requisite criteria for the ten SQA work activities

plus model validation/performance, the revised code may be submitted to the CR.

4. The code sponsor requests a review of the evaluation and designation of the code as a

toolbox code application. All supporting documentation should be transmitted as

attachments to the request.

5. DOE’s Office of Quality Assurance will review the submittal and make a decision. If the

decision is positive, the appropriate links will be provided for the code version, and a

general notice will be posted on the CR website regarding a new code revision. In

B-8 DOE G 414.1-4A

 XX-XX-2015

parallel with this action, the older code version will be removed from the CR and

designated as an “archived toolbox version.”

B.2.3 REMOVAL OF CODES FROM THE CENTRAL REGISTRY

Codes are also subject to being removed from the CR. Causes for removal include:

1. The code developer indicates that older versions will no longer be supported and elects to

retire the code.

2. New survey information indicates that few if any sites are using the code and other codes

are being used for the specified safety applications.

3. DOE’s Office of Quality Assurance decides to remove the code based on evidence of

vulnerabilities or unsatisfactory code performance. Significant software errors in the

subject code may lead to this outcome.

A comment period of 60 days is allowed after initial notification that a code will be removed

from the CR. Removal may proceed provided no compelling arguments are received during the

comment period that the code should be retained in the CR. The initial and final notification

should explain the basis for the removal and provide supporting documentation.

Upon removal from the CR, the code is designated an “archived code.”

B.2.4 ISSUE RESOLUTION AND ACTION COMMUNICATION

Actions regarding the CR will be communicated to DOE staff, DOE code users, and stakeholder

groups. The level of detail in the communication is within the discretion of DOE’s Office of

Quality Assurance.

Announcements of CR actions may be posted on the CR website, communicated directly to

Program Secretarial Offices, or both. The URL for the CR website is:

http://energy.gov/ehss/safety-software-quality-assurance-central-registry

http://energy.gov/ehss/safety-software-quality-assurance-central-registry

DOE G 414.1-4A C-1

DRAFT XX-XX-2015

C-1

APPENDIX C. SELECTING AND IMPLEMENTING APPLICABLE WORK

ACTIVITIES

C.1 INTRODUCTION

This appendix provides additional detail and examples on how to implement software quality

assurance (SQA) work activities listed in Attachment 4 of DOEO 414.1D, Quality Assurance

and further described in Section 5.2 of this Guide. These work activities depict a systematic

application of the software development life-cycle processes for both safety software and OSW.

This appendix uses the six-step approach as previously shown in Figure 5.1-1.

C.2 APPROACH

C.2.1 Step 1: Identify Applicable Consensus Standards

As part of a quality assurance program (QAP), DOE O 414.1D requires the selection, of

appropriate national or international consensus standards, consistent with contractual and

regulatory requirements and Secretarial Officer direction. Select and document the appropriate

national or international consensus standards and document the selection in the site-wide QAP.

Standards for Safety Software

ASME NQA-1-2008/ NQA-1a 2009 is used to satisfy DOE O 414.1D requirements for safety

software. However, DOE O 414.1D and later editions of ASME NQA-1 permit use of other

national or international consensus standards that provide an equivalent level of QA.

Standards for OSW

DOE O 414.1D requires that all software meet the applicable QA requirements in Attachment 2

using a graded approach. DOE O 414.1D also requires the use of appropriate national or

international consensus standards, in whole or in part, consistent with regulatory requirements

and Secretarial Officer direction, to clearly identify which standards, or parts of the standards,

are used in the QAP.

C.2.2 Step 2: Determine Software Category, Sub-category and Grading Level

SQA is applied based on three factors:

 Software category;

 Software sub-category; and,

 Software grading level.

As discussed in Section 2.2 and shown in Table C-1, this Guide identifies two software

categories and six software sub-categories.

C-2 DOE G 414.1-4A

 XX-XX-2015

Table C-1 Software Categories and Subcategories

Software Category Software Subcategory

1. Safety Software

Safety System Software (SSS)

Safety and Hazard Analysis and Design Software (SHADS)

Safety Management and Administrative Control Software (SMACS)

2. OSW

Safety Affecting Software (SAS)

Critical Software (CS)

General Software (GS)

Safety Software Categories

For safety software, determine the software category and sub-category using the definitions for

in DOE O 414.1D and in Section 2.2.1 of this Guide.

OSW Categories

For OSW, determine the software category and subcategory using the governing QAP and

Section 2.2.2 of this Guide.

It is important to have a clear understanding of the software category, as this determination

involves software function and applicability, and is therefore application-specific. The same

software could be determined to be safety software in one application for example, in a nuclear

facility, and determined to be OSW in a non-nuclear facility application. To facilitate making

the correct determination, involve personnel qualified and knowledgeable of the software

application such as design authority, system engineers, software owners, software users, etc.

Procedures including forms may be developed to document the process and supporting rationale.

If application of the software significantly changes, review the original determination and revise

it, as necessary.

Grading Levels

Section 2.2 of this Guide offers guidance on how to determine the appropriate grading level,

based on software risk and consequences of software failure.

Safety Software:

DOE O 414.1D requires that safety software grading levels are established, documented, and

approved by the responsible DOE authority for each site. Such grading levels are then used in

conjunction with the software category and sub-category to apply the appropriate level of SQA.

The grading level examples are shown in Table C-2. Use the grading level designations (i.e., A,

DOE G 414.1-4A C-3

DRAFT XX-XX-2015

C-3

B, C), with the A grading level having the highest consequence of failure and the C grading level

having the lowest consequence of failure, as described in Table 2.2-1.

OSW:

DOE O 414.1D requires that all software, therefore including OSW, meet applicable QA

requirements using a graded approach. In applying a graded approach, the grading levels shown

in Table C-2 may be used for OSW. Grading level designations range from 1 to 4, with grading

level 1 having the lowest consequence of failure and grading level 4 having the highest

consequence of failure, as described in Table 2.2-2.

Table C-2 Example Software Category, Subcategory and Grading Level

Software Category Software Subcategory
Grading

Level

1. Safety

Software

Safety System Software (SSS) A, B, C

Safety and Hazard Analysis and Design Software (SHADS) A, B, C

Safety Management and Administrative Control Software (SMACS) A, B, C

2. OSW

Safety Affecting Software (SAS) 4, 3

Critical Software (CS) 3, 2

General Software (GS) 1

C.2.3 Step 3: Determine Applicability of the Work Activity

Applicability is a concept sometimes confused with grading. Applicability is based on the scope

and control of the software project, not on the software category, sub-category or grading level.

It means to apply work activities only if they are:

 Within the scope of the software project (germane to the software/work at hand); and,

 Within the control of the project.

For example, if the software project involves purchasing software and no software design is

planned by or within the control of procurement, then the work activity entitled “Software

Design and Implementation” does not apply to the purchaser’s project. In this example, the

purchaser may note “not applicable” in the software planning documentation for the software

design and implementation work activity. Applicability of work activities is illustrated in

Example A below.

Example A: Applicability of Work Activities

A DOE facility is buying the same process piping design and analysis software for two facilities,

one a nuclear facility and the other an administration building.

C-4 DOE G 414.1-4A

 XX-XX-2015

For the nuclear facility, the facility determined the software category as SSS, the sub-category as

SHADS, and the grading level as B.

For the non-nuclear facility, the facility determined the software category as OSW, the sub-

category as GS, and grading the level as 1.

Although the software for the facilities differs in category, sub-category and grading level, the

software scope of the project in both cases is to purchase COTS from a supplier. The project

does not involve any software design or development by the facility. Accordingly, the design

and implementation work activity is not applicable.

C.2.4 Step 4: Define the Work Activity with Consensus Standards

 Use the site-adopted consensus standards to determine and document necessary work activities.

See Example B for safety software application.

Example B: Safety Software - Define the Work Activity with Consensus Standards

Table C-3 shows how a DOE facility defined the requirements for the working activity problem

reporting and corrective action. The facility uses ASME NQA-1-2008/ NQA-1a 2009 as its

consensus standard; the work activity satisfies one cited section of DOE O 414.1D and two

sections from ASME NQA-1-2008/ NQA-1a 2009.

Table C-3 Safety Software - Problem Reporting and Corrective Action (Example B)

Source of Requirements Requirements Definition

DOE O 414.1D, Att. 2, § 3

– Criterion 3 –

Management/Quality

Improvement

a. Establish and implement processes to detect and prevent quality problems.

b. Identify, control, and correct items, services, and processes that do not meet

established requirements.

c. Identify the causes of problems, and include prevention of recurrence as a part of

corrective action planning.

d. Review item characteristics, process implementation, and other quality related

information to identify items, services and processes needing improvement.

ASME NQA-1, Part I,

Requirement 16 –

Corrective Action

Conditions adverse to quality should be identified promptly and corrected as soon as

practicable. In the case of a significant condition adverse to quality, the cause of the

condition should be determined and corrective action taken to preclude recurrence.

The identification, cause, and corrective action for significant conditions adverse to

quality should be documented and reported to appropriate levels of management.

Completion of corrective actions should be verified.

ASME NQA-1, Part II, SP

2.7; § 204 – Problem

Reporting & Corrective

(a) Method(s) for documenting, evaluating, and correcting software problems should

(1) Describe the evaluation process for determining whether a reported problem is

an error or other type of problem (e.g., user mistake).

DOE G 414.1-4A C-5

DRAFT XX-XX-2015

C-5

Source of Requirements Requirements Definition

Action (2) Define the responsibilities for disposition of the problem reports, including

notification to the originator of the results of the evaluation.

(b) When the problem is determined to be an error, the method should provide, as

appropriate, for:

(1) How the error relates to appropriate software engineering elements;

(2) How the error impacts past and present use of the computer program;

(3) How the corrective action impacts previous development activities; and,

(4) How the users are notified of the identified error, its impact; and how to avoid

the error, pending implementation of corrective actions.

The problem reporting and corrective action process should address the appropriate

requirements of Part I, Requirement 16.

C.2.5 Step 5: Grade by Specifying Appropriate Work Activity Requirements

Grade the work activity by specifying the applicable elements of the consensus standard for each

software category, sub-category, and grading level. This specification is typically documented in

site SQA program documents.

For safety software, and for OSW with high to very-high consequence of software failure, all

applicable consensus standard requirements should be applied. For software where there is a

lower consequence of failure, a graded approach should be applied commensurate with the risk.

Example C below addresses safety software, while Example D addresses OSW.

Example C: Safety Software - Grading by Specifying the Appropriate Elements of

Consensus Standard(s) for a Work Activity

A DOE nuclear facility uses safety software that spans three safety software categories and

grading levels A, B, and C. The facility uses NQA-1 as its consensus standard in its approved

QAP for these facilities. Three situations are dealt with below.

1. SSS in a PLC is used to maintain the relative pressure in a safety class glovebox containing

radioactive materials. The consequences of software are high and hence grading level A has

been assigned.

2. SHADS is used by safety basis personnel to model postulated releases of radioactive material.

The modeling software provides dispersion information that the site uses to determine

unmitigated accident consequences. After application of selected controls, the same software is

used for determining mitigated consequences. The consequence of failure of this software has

been designated to be moderate suggesting grading level B.

C-6 DOE G 414.1-4A

 XX-XX-2015

3. SMACS is used to control the material at risk for conformance with a nuclear facility safety

basis. The consequence of failure of this software has been determined to be relatively low

because other available hazard controls can compensate for the failure; hence, grading level C is

assigned.

The facility has determined that SQA work activity Problem Reporting and Corrective Action

applies to each of these three software applications. Using the requirements in Table C-3 and

considering the consequences of software failure, the facility has arrived at the conclusions

displayed in Table C-4.

Due to the potential high consequences of software failure, more requirements of the consensus

standard are specified for safety software to reduce the risk associated with safety software.

Often, for safety software, much of the software grading is performed in the rigor used to satisfy

this requirement (See Step 6, Grade by Applying Appropriate Rigor).

Table C-4 Safety Software: Grading of Problem Reporting and Corrective Action

(Example C)

Source of Requirement

Grading Work Activity

SSS

Safety Class

Glovebox

Grading Level A

SHADS

Radionuclide

Dispersion Modeling,

Grading Level B

SMACS

MAR Control,

Grading Level C

DOE O414.1D, Att. 2, S 3 –

Criterion 3 –

Management/Quality

Improvement

Full Full Full

ASME NQA-1, Part I,

Requirement 16 – Corrective

Action

Full Full Full

ASME NQA-1, Part II, SP

2.7; S 204 – Problem

Reporting & Corrective

Action

Full Full Partial

Full = The requirement is used in its entirety.

Partial = Selected elements are not used.

Example D: OSW - Grading by Specifying the Appropriate Elements of Consensus

Standards for a Work Activity

A DOE facility uses OSW in three applications. Grading levels for OSW are described in the

facility’s QAP. Three situations are dealt with below.

DOE G 414.1-4A C-7

DRAFT XX-XX-2015

C-7

SAS is used to control negative ventilation pressure in gloveboxes containing dangerous

biological agents and toxins. The consequence of software failure has been determined to be

relatively high and hence grading level 4 has been assigned.

CS is used by emergency response personnel in accordance with the site’s Continuity of

Operations Plan. This modeling software provides biological agent or toxin dispersion

information to guide emergency response actions in the event of a containment breach. The

consequence of failure of this software has been determined to be moderate, suggesting grading

level 3 is appropriate.

GS is used to control heating, ventilation and cooling for personnel comfort in an office building.

The consequence of failure of this software has been determined to be relatively low and

accordingly, grading level 1 has been assigned.

The facility has determined that SQA work activity Problem Reporting and Corrective Action

applies to each of these software applications. The facility uses ANSI/ISO/ASQ (E) Q9001-

2008, American National Standard Quality Management Systems – Requirements, hereafter

referred to as ISO 9001, as its QAP consensus standard.

The facility has identified the requirements for problem reporting and corrective actions as

shown in Table C-5.

Table C-5 OSW: Definition of Problem Reporting and Corrective Action (Example D)

Source of Requirements Requirements Definition

DOE O 414.1D, Att. 2,

§ 3 – Criterion 3 –

Management/Quality

Improvement

a. Establish and implement processes to detect and prevent quality problems.

b. Identify, control, and correct items, services, and processes that do not meet

established requirements.

c. Identify the causes of problems, and include prevention of recurrence as a part of

corrective action planning.

d. Review item characteristics, process implementation, and other quality related

information to identify items, services and processes needing improvement.

ISO 9001, § 8.5.2,

Corrective Action

The organization should take action to eliminate the causes of nonconformities in

order to prevent recurrence. Corrective actions should be appropriate to the effects of

the nonconformities encountered. A documented procedure should be established to

define requirements for:

a. Reviewing nonconformities (including customer complaints).

b. Determining the causes of non-conformities.

c. Evaluating the need for action to ensure that nonconformities do not recur.

d. Determining and implementing action needed.

e. Records of the results of action taken (see [ISO 9001:2008 Section] 4.2.4).

f. Reviewing the effectiveness of the corrective action taken.

C-8 DOE G 414.1-4A

 XX-XX-2015

Source of Requirements Requirements Definition

ISO 9001, § 8.5.3,

Preventive Action

The organization should determine action to eliminate the causes of potential in order

to prevent their occurrence. Preventive actions should be appropriate to the effects of

the potential problems. A documented procedure should be established to define

requirements for:

a. Determining potential nonconformities and their causes.

b. Evaluating the need for action to prevent occurrence of non-conformities.

c. Determining and implementing action needed.

d. Records of results of action taken (see [ISO 9001:2008 Section] 4.2.4).

e. Reviewing the effectiveness of the preventive action taken.

The facility has specified the requirements for problem reporting and corrective action as shown

below in Table C-6.

Table C-6 OSW: Grading of Problem Reporting and Corrective Action (Example D)

Source

of Requirements OSW Grading of Work Activity

Safety Affecting

Software (SAS)

Biological Hazard

Glovebox Ventilation

Grading Level 4

Critical Software

(CS)

Modeling of

Biological Hazard

Release

Grading Level 3

General Software (GS)

Office Building Comfort

Heating/Cooling

Grading Level 1

DOE O 414.1D, Att. 2, § 3 –

Criterion 3 –

Management/Quality

Improvement

Full Full Full

ISO 9001, § 8.5.2, Corrective

Action
Full Full Partial

ISO 9001, § 8.5.3, Preventive

Action
Full Partial None

Full = The requirement is used in its entirety.

Partial = Selected elements are not used.

C.2.6 Step 6: Grade by Applying Appropriate Rigor

Examples C and D show how to grade by specifying the appropriate elements of consensus

standard(s) for a work activity. This section shows how to grade by applying appropriate rigor.

Rigor, as defined in this Guide, is the level of detail and thoroughness in the analysis,

documentation and action used to satisfy a requirement. The level of rigor is an important tool

for applying the graded approach to risk level. Example E illustrates how different levels of

rigor may be may be applied to a work activity for OSW subcategories. Examples E shows how

applicable requirements were satisfied in each scenario employing different levels of rigor.

Example E: OSW – Project Management and Quality Planning

DOE G 414.1-4A C-9

DRAFT XX-XX-2015

C-9

As stated in Example D, this DOE facility uses three subcategories of OSW. Three situations are

dealt with below.

SAS is used to control negative ventilation pressure in gloveboxes where dangerous biological

agents and toxins are confined. The consequence of software failure has been determined to be

relatively high and hence grading level 4 has been assigned. CS is used by emergency response

personnel in accordance with the site’s Continuity of Operations Plan. This modeling software

provides biological agent or toxin dispersion information to guide emergency response actions in

the event of a containment breach. The consequence of failure of this software has been

determined to be relatively moderate, suggesting grading level 3 is appropriate. GS is used to

control heating and cooling ventilation for personnel comfort in an office building. The

consequence of failure of this software has been determined to be relatively low and accordingly,

grading level 1 has been assigned.

Grade by Specifying Appropriate Rigor

The DOE facility discussed above developed three separate project plans, one for each software

application, and based each plan on IEEE/ISO/IEC 16326-2009, Systems and Software

Engineering--Life Cycle Processes--Project Management.

The plan for the SAS contained more detail than both the CS and GS software plans. The project

team was larger and even more diverse than that for the CS and GS and accordingly required

significant documentation of roles responsibilities and interfaces. The funding for the software

project was only available in the current fiscal year. If the project wasn’t completed by the end of

the fiscal year, then it would be placed on hold until funding to complete it could be obtained.

Accordingly, the project plan included several project risk management controls to closely

monitor the project and promote prevention/early detection of delays and timely corrective

action. The plan required an in-depth hazard analysis based on a nationally recognized

standard
92

 ; the plan required that multiple failures/common cause failures would be addressed as

part of the hazard analysis. The plan required alternate calculations to check the software design.

The plan for the CS was lengthier as it had a much larger and diverse team and the software

project was more complex than the GS software which required a hazard analysis using a “what

if” technique. The plan specified that once the design was proven with both alternate

calculations, in-depth test planning and testing of multiple test cases which bounded the possible

applications would be performed. The plan required more documentation of roles,

responsibilities, interface controls, etc. and alternate modeling calculations to prove the software

design was acceptable.

92 ANSI/ISA 84.00-01, Application of Safety Instrumented Systems for the Process Industries.

C-10 DOE G 414.1-4A

 XX-XX-2015

The plan for the GS was a few pages in length, did not require a hazard analysis or alternate

calculations and emphasized the testing of the software. There was sufficient time to complete

the project within the allocated annual budget without imparting operational risk to the DOE

facility; accordingly very few project risk management controls were planned.

Example F: Applying Rigor in Acceptance Testing

For safety software used safety class glovebox ventilation (SSS), the facility required a stress

test. The final acceptance test was run multiple times to ensure satisfactory performance prior to

introduction of radioactive material into the glovebox.

For the OSW used for the office building’s heating and cooling (GS), the facility did not require

stress testing and required only one final acceptance test prior to building occupancy.

Example G: Applying Rigor in Software Design Change Reviews

For the OSW used to model biological agent and toxin releases for emergency response (CS), the

facility required that a group of independent subject matter experts in various disciplines review

software design changes.

By contrast, in the office building case, the facility required a less rigorous review of design

changes.

DOE G 414.1-4A D-1

DRAFT XX-XX-2015

D-1

APPENDIX D. QUALITY ASSURANCE STANDARDS FOR SOFTWARE

D.1 INTRODUCTION

. This Appendix reviews major national and international consensus standards and other

guidance related to quality the application of software quality assurance (SQA) for their

suitability to satisfy Department of Energy (DOE) Order (O) 414.1D, Quality Assurance

requirements in whole or in part.

D.2 QUALITY ASSURANCE PROGRAM

DOE 414.1D also requires that appropriate national or international consensus standards be used

to develop and implement, using a graded approach, quality assurance programs (QAPs) at DOE

sites consistent with contractual and regulatory requirements. Consensus standards should be

used for applying quality assurance (QA) to software activities.

D.3 QA PROGRAM STANDARDS VERSUS SOFTWARE STANDARDS

Numerous consensus standards have been developed that address every aspect of software.

Other documents such as technical reports, agency directives, and industry guides may be useful

for application of SQA, though they may not have been developed through an accredited

consensus standards process. Because these standards could be interpreted as “QA standards,” it

is necessary to limit discussion of consensus standards to those that directly support compliance

with DOE O 414.1D and the development of a contractor QAP that includes safety software and

other software (OSW).

D.4 USE OF STANDARDS IN A QA PROGRAM

The majority of software consensus standards have been developed to address specific phases of

software development or a single criterion within the QAP. Where this type of standard is used,

it should be in the context of the broader QAP that includes all criteria necessary for effective

QA. This approach will differentiate between QAP standards and standards that address a

specific activity or criterion.

D.5 QA PROGRAM AND SOFTWARE QUALITY STANDARD REQUIREMENTS

Selection of QAP consensus standards for safety software should be based on:

 compatibility with DOE O 414.1D;

 relevance to facility or personnel safety;

 effect on the environment and programmatic mission;

 compatibility with a software consensus standard;

 applicability to software developed in-house, purchased, or modified;

 applicability to the entire software life-cycle; and

D-2 DOE G 414.1-4A

 XX-XX-2015

 application of commercial SQA practices.

D.6 NATIONAL STANDARD FOR NUCLEAR FACILITY QUALITY AND

SOFTWARE

American Society of Mechanical Engineers (ASME) NQA-1-2008/NQA-1a-2009, Quality

Assurance Program for Nuclear Facility Applications, includes SQA requirements that can be

integrated applied directly to software. ASME NQA-1 2008/NQA-1a-2009 provides

requirements for software quality in the context of an overall QA program. These sections are

especially relevant to SQA:

 ASME NQA-1-2008/NQA-1a-2009, Part I, Requirement 3, Section 800, Design Control;

 Part II, Subpart 2.7, Quality Assurance Requirements for Computer Software for Nuclear

Facility Applications; and

 Part IV, Subpart 4.1, Guide on Quality Assurance Requirements for Software.

ASME NQA-1-2008/NQA-1a-2009 is a practical choice for implementing DOE O 414.1D as it

applies to safety software because it:

 is easily supplemented with standards promulgated by the International Atomic Energy

Agency (IAEA), the International Electrotechnical Commission (IEC), and the Institute

of Electrical and Electronics Engineers (IEEE);

 provides independence for development and verification;

 supports graded implementation; and

 is widely used among DOE’s contractor QA programs.

ASME NQA-1-2012 provides additional standards guidance as noted below:

 Subpart 4.1.1, provides guidance on modifications of an ISO 9001:2008, Quality

Management Systems Standard, for compliance with ASME NQA-1 2008.

 Subpart 4.1.2 describes how ASME NQA-1 2008 aligns with DOE’s QA criteria.

 Subpart 4.1.4, provides guidance on modifications of an IAEA GS-R-3 Quality Program

to meet ASME NQA-1 2008.

 Subpart 4.2.1, provides guidance on the graded application of nuclear quality assurance

standards for research and development.

 Subpart 4.2.4, provides guidance on the Control of Scientific Investigations.

Institute of Electrical and Electronics Engineers (IEEE) Std 7-4.3.2-2003
93

 describes an

integrated approach to computer-specific requirements for developmental firmware, software,

and hardware. This standard recommends a minimum set of functional and design requirements

for computer components of a safety system employed in nuclear power generating stations.

93 IEEE Std 7-4.3.2-2003, IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear Power
Generating Stations, Institute of Electrical and Electronic Engineers, 2003.

DOE G 414.1-4A D-3

DRAFT XX-XX-2015

D-3

IEEE Std 1228
94

 provides requirements for the development of a management plan and

performance of safety software activities.

American National Standards Institute (ANSI)/American Nuclear Society (ANS)-10.4-2008
95

and ANSI/ANS-10.7-2013
96

 supplements IEEE Std 7-4.3.2-2003 by targeting activities to

improve the reliability of scientific and engineering computer applications while mitigating the

risk of incorrect applications. IEEE has a complete suite of software and systems engineering

standards applicable to safety software.

D.7 INTERNATIONAL CONSENSUS STANDARDS FOR QUALITY AND SOFTWARE

D.7.1 INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)

The IAEA develops international standards for nuclear safety. The IAEA offers standards,

guides, and requirements for all aspects of nuclear facility safety including software. The

requirements and guidance for nuclear facility quality are addressed in IAEA Safety Series No.

50-C/SG-Q, Quality Assurance for Safety in Nuclear Power Plants and other Nuclear

Installations, and Safety Guides 50-SG-Q1 through Q14, respectively. The IAEA code quality

requirements closely parallel the DOE O 414.1D.

IAEA safety software guidance is detailed in Technical Reports Series No. 397, Quality

Assurance for Software Important to Safety. This series provides information and guidance on

QA programs, covering the entire life-cycle of software important to safety. Technical Report

397 (2000) was offers implementation guidance tied to the QA program requirements found in

the IAEA code.

The IAEA Safety Guide Series No. NS-G-1.1, Software for Computer Based Systems Important

to Safety in Nuclear Power Plants, provides expanded information that can be fully integrated

with the ASME NQA-1 2008/NQA-1a-2009 and DOE O 414.1D to produce an effective quality

program for software.

D.7.2 INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

The IEC is responsible for several software standards. These standards, referenced in the

IAEA’s Technical Report 397 are:

 94 IEEE Std 1228- 1994, Standard for Software Safety, IEEE, 1994.
95 American National Standards Institute (ANSI)/American Nuclear Society (ANS) ANSI/ANS-10.4-2008:

Verification and Validation of Non-Safety-Related Scientific and Engineering Computer Programs for the Nuclear
Industry.

96 ANSI/ANS 10.7-2013, Non-Real-Time, High-Integrity Software for the Nuclear Industry—Developer

Requirements, ANSI/ANS, March 2013

D-4 DOE G 414.1-4A

 XX-XX-2015

 IEC-60880 edition 2, Nuclear power plants – Instrumentation and control systems

important to safety – Software aspects for computer-based systems performing category

A functions,

 IEC 60987 edition 2.1, Nuclear power plants - Instrumentation and control important to

safety - Hardware design requirements for computer-based systems,

 IEC 61226 edition 3.0, Nuclear Power Plants—Instrumentation and Control Systems

Important for Safety—classification,

 IEC 61508 edition 2 Parts 1-7, Functional Safety of Electrical/Electronic/Programmable

Electronic Safety Related Systems, and

 IEC 61511 Parts 1-3, Functional Safety – Safety Instrumented Systems for the Process

Industry Sector.

D.7.3 INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

ISO is responsible for ISO 9001-2008, Quality Management Systems – Requirements. ASME

NQA-1-2012, Subpart 4.1.1, provides guidance on modifications of an ISO 9001:2008, Quality

Management Systems Standard, for compliance with ASME NQA-1 2008. ISO 9001 does not

specifically address computer software. However, ISO/IEC has issued technical reports related

to system and software engineering. They are found on the following website:

http://www.iso.org/iso/home/search.htm?qt=software+quality+assurance&sort=rel&type=simple

&published=on

D.8. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA)

NASA’s SQA requirements are found in NASA 8739.8, Standard for Software Assurance. Also

relevant are NASA STD 8719.13B, Software Safety, and NASA-GB-8719.13, NASA Software

Safety Guidebook.

D.9. STANDARDS FOR DOE QA RULE IMPLEMENTATION

ASME NQA-1-2102, Subpart 4.1.2 provides a crosswalk between ASME NQA-1 2008, 10 CFR

Part 830 Subpart A, and DOE O 414.1C
97

.

97 DOE O 414.1C, Quality Assurance, dated 6-17-05

http://www.iso.org/iso/home/search.htm?qt=software+quality+assurance&sort=rel&type=simple&published=on
http://www.iso.org/iso/home/search.htm?qt=software+quality+assurance&sort=rel&type=simple&published=on

DOE G 414.1-4A XX-XX-20XX

 DRAFT

E-1

APPENDIX E. SAFETY SOFTWARE CRITERIA REVIEW AND APPROACH

DOCUMENT (CRAD)

E.1 INTRODUCTION

This Appendix contains criteria and guidelines for assessing safety software used in Department

of Energy (DOE) facilities. DOE Order (O) 414.1D, Quality Assurance requires that all software

meet the applicable quality assurance (QA) requirements in Attachment 2, using a graded

approach. The assessment criteria and guidance provided in this Appendix may also be applied

to other software (OSW).

This document is organized as follows.

 The Assessment Guidelines section covers the purpose, scope, guiding principles, and

assessment methodology.

 The Criteria and Approach section presents the objective, criteria, approach, and

tailoring for the following work activities: (1) software project management and quality

planning, (2) software risk management, (3) software configuration management,

(4) procurement and supplier management, (5) software requirements identification and

management, (6) software design and implementation, (7) software safety analysis and

safety design methods, (8) software verification and validation, (9) problem reporting and

corrective action, (10) training of personnel in the design, development, use, and

evaluation of software.

E.2 PURPOSE AND SCOPE

The purpose and scope of this CRAD is to provide a set of consistent criteria and guidelines for

the assessment of software, to ensure that software used in DOE’s facilities is adequate. The

SQA criteria for evaluating software are based on DOE O 414.1D, ASME NQA-1-2008/NQA-

1a-2009, Quality Assurance Program for Nuclear Facility Applications and applicable Institute

of Electrical and Electronics Engineers (IEEE) standards.

This CRAD is detailed enough to evaluate the overall quality assurance program (QAP) as it

applies to software. It focuses rather on the software application or product and tailors the scope

of the assessment to suit the specific software usage. The CRAD could be used for assessment

of the following types of software:

 custom software developed by DOE, its contractors, or subcontractors;

 configurable software such as programmable logic controllers (PLCs); and

 acquired software such as commercial off the shelf (COTS) software.

E-2 DOE G 414.1-4A

 XX-XX-2015

E.3 GUIDING PRINCIPLES

The following principles should guide the conduct of the assessment. The assessment team

leader, with assistance from the DOE site manager responsible for these assessments, should

ensure that these guiding principles are incorporated in the tailoring process for assessing safety

software and safety-affecting software applications.

 The team should review any previous assessments and reviews of the software. This

review will enable the team to understand previous assessments, software qualification

processes, associated requirements and performance criteria, assumptions concerning

system operations, and the role of software in operations.

 The team should review any lessons learned from past events associated with software

applications and include any additional attributes as appropriate in the assessment plan.

 The review of SQA processes for existing safety software should follow the guidance

provided in Section 3.1.4, Legacy Software Applications.

 The physical boundaries of the software within the system or subsystem level or portions

thereof under review should be documented in the assessment report.

 The assessment of specific software applications should begin with gaining an

understanding of the overall system, then documenting the system functions, the

performance criteria that the system should meet to successfully accomplish its functions,

and the role of the software in ensuring that these functions and criteria are met. The

potential consequences of failure of the software and the associated effects on system

operability should be understood and documented.

 The facility staff should assist the team in understanding the associated software quality

assurance (SQA) process. The staff should also provide documented evidence to the team

that the appropriate SQA standards were applied to software development, procurement,

or use.

 Procedures and records for software design, implementation, procurement, verification

and validation, testing, and maintenance should be evaluated for adequacy.

 If the team identifies a condition that poses an imminent threat to personnel or facility

safety, it should notify line management immediately. Team personnel should point out

the imminent threat condition to their points of contact or appropriate facility manager,

and notify the assessment team leader as soon as practical.

 Applicability of the assessment criteria and guidelines should be appropriate for the

assessment scope. These assessment criteria and guidelines should be tailored to allow

the most cost-effective use of resources and should take into account considerations such

as recently completed assessments, evaluations, studies, inspections, and other relevant

factors.

DOE G 414.1-4A XX-XX-20XX

 DRAFT

E-3

 The team should consider the type of software (custom-developed, configurable or

acquired) when evaluating the adequacy of the SQA processes.

 The assessment should consider the effectiveness of SQA processes that are separate

from system quality processes. In many instances, especially with acquired software, the

separation of software from the system may increase costs but not increase the safe

operation of the system.

 Information for existing software may be contained in other system-related

documentation where software has an application.

E.4 CRITERIA AND APPROACH

The Criteria and Approach section is divided into the following work activities:

1. Software Project Management and Quality Planning

2. Software Risk Management

3. Software Configuration Management (SCM)

4. Procurement and Supplier Management

5. Software Requirements Identification and Management

6. Software Design and Implementation

7. Software Safety Analysis and Safety Design Methods

8. Software Verification and Validation (V&V)

9. Problem Reporting and Corrective Action

10. Training of Personnel in the Design, Development, Use, and Evaluation of Software

Each of these work activities includes the following:

 Objective: Describes the assessment objective for the work activity and the intended

contribution to the adequacy of the software.

 Criteria: Suggests characteristics of the software that should be verified.

 Approach: Suggests information needed to guide the team in assessing the quality of the

software. However, the team may choose to select another approach to meet the

assessment-specific needs.

E.4.1 SOFTWARE PROJECT MANAGEMENT AND QUALITY PLANNING

Objective:

Software project management and quality planning should depict the organizational structure

that supports software life-cycle stages and deliverables and influences and controls the quality

of the software.

E-4 DOE G 414.1-4A

 XX-XX-2015

Criteria:

1. Software project management and quality planning have been implemented, depicting

organizational structure, responsibilities, and authorities for those managing, performing,

and assessing the software projects.

2. SQA activities, software practices, and documentation are periodically assessed.

3. Software quality activities have been effectively implemented.

Approach:

Identify how project management and QA planning are done for the project or facility at hand.

Including:

 software project schedule;

 software project scope;

 software engineering activities, including software requirements and design;

 software V&V activities, including reviews and test;

 SCM activities;

 software risk management approach;

 software safety analysis and planning;

 supplier control;

 user and software staff training,

 standards, practices, conventions, and metrics;

 records and document collection, maintenance, and retention; and

 problem reporting and corrective action methods.

Many of the items listed above may be detailed in unconventional locations. Software V&V, for

example, may be described in software test plans.

Determine whether the documents containing the software project management and QA plan are

configuration-controlled and document-controlled, and that such controls will be maintained

until the software is retired. Verify that the software project management and QA plan is

reviewed and updated, as necessary, for completeness and consistency.

E.4.2 SOFTWARE RISK MANAGEMENT

Objective:

Software risk management seeks to prevent software from adversely affecting project risk.

DOE G 414.1-4A XX-XX-20XX

 DRAFT

E-5

Criteria:

1. Potential software risks identified

2. Likelihood and consequences of safety software failure determined.

3. Risks prioritized.

4. Risk avoidance, mitigation, and/or transfer strategies created.

5. Risks monitored.

Approach:

Identify how software risk management is accomplished at the site or facility. The risk

management plan may be described in a standalone document or may be embedded in another

document. Ensure that risk management planning covers:

 scope of the risk management activities;

 risk management policies and process (technical and managerial) under which risk

management is to be performed;

 technical and managerial risks and likelihood and potential safety consequences;

 risk thresholds for the software application;

 risk avoidance, mitigation, or transfer options; and

 management techniques to address risks throughout project life-cycle, including tracking,

decision-making, and feedback points.

E.4.3 SOFTWARE CONFIGURATION MANAGEMENT

Objective:

Software configuration is defined, maintained, and controlled until the software is retired.

Criteria:

1. Software configuration items are identified, baselined and controlled.

2. A baseline labeling system is established and implemented.

3. For custom-developed software, periodic configuration audits and reviews are conducted

and documented.

4. Proposed software changes are documented, evaluated, and approved.

5. Only approved changes are implemented.

E-6 DOE G 414.1-4A

 XX-XX-2015

Approach:

Review appropriate documents, such as applicable procedures related to software change control,

to determine if an SCM process exists and is effective. This determination is made based on the

following actions:

 Verify the existence of documented processes to control, uniquely identify, describe, and

document the configuration of each version or update of safety software and its related

documentation. This documented evidence may be in the SCM plan or in another

software or system level document.

 Verify that a configuration baseline is defined and that it is being adequately controlled.

This baseline should include operating system components, any associated runtime

libraries, acquired software executables, custom-developed source code files, users’

documentation, the appropriate documents containing software requirements, software

design, software V&V procedures, test plans and procedures, and any software

development and quality planning documents.

 Verify that a baseline labeling system has been created that uniquely identifies each

configuration item, identifies changes to configuration items by revision, and provides

the ability to uniquely identify each configuration.

 Review procedures governing change management for installing new versions of the

software components, including new releases of acquired software.

 Review software change packages and work packages to ensure that (1) possible impacts

of software modifications are evaluated before changes are made, (2) various software

system products are examined for consistency and revised as necessary after changes are

made and updated, (3) software is tested according to established standards after changes

have been made, (4) changes are evaluated and approved for release by the responsible

organization, and (5) software verification activities are performed as necessary to ensure

that the change does not adversely affect the performance of the software.

 Interview a sample of cognizant line managers for engineering and QA, and other

personnel to verify their understanding of the change control process and their

commitment to manage changes in a formal, disciplined, and auditable manner.

 Perform audits or reviews as necessary.

E.4.4 PROCUREMENT AND SUPPLIER MANAGEMENT

Objective:

Acquired software meets the appropriate level of QA, based on risk, safety, facility life-cycle,

complexity, and project quality requirements.

DOE G 414.1-4A XX-XX-20XX

 DRAFT

E-7

Criteria:

1. Procurement documents identify the technical and quality requirements.

2. Acquired software meets the technical and quality requirements.

3. Suppliers’ QA programs meet or exceed the QA requirements specified in the

procurement documents.

4. Procurement documents specify supplier reporting of software defects to the purchaser

and the purchaser’s reporting of defects to the supplier.

Approach:

Suppliers of acquired software are evaluated to ensure that the safety software is developed

under an appropriate QA program and satisfies the specific requirements. The assessment of

software procurement process should include the following.

 Locate and examine software technical and QA requirements. These requirements may be

embedded in the DOE contractor’s or subcontractor’s procurement document, software or

system design description, or SQA plan. If not documented in the procurement contract,

ensure that the supplier has received such technical and QA requirements.

 Verify that the supplier’s QA program has been reviewed and meets or exceeds the

procurement specification requirements. The purchaser may review the supplier’s QA

program through supplier assessment, supplier self-declaration, third-party certification,

or other similar methods.

 Review evidence that the acquired software was evaluated for the appropriate level of

quality. This evidence may be included in the test results, a test summary, supplier site

visit reports or supplier QA program assessment reports.

 Review procurement or other documents between the supplier and purchaser for a

documented process to report software defects from the supplier to the purchaser and the

purchaser to the supplier.

E.4.5 SOFTWARE REQUIREMENTS IDENTIFICATION AND MANAGEMENT

Objective:

Software functions, requirements, and their bases are defined, documented and managed

throughout the safety software life-cycle.

Criteria:

1. The software requirements are documented and consistent with software functions.

2. The functionality, performance, security, interface, and safety requirements for the

safety software are complete, correct, consistent, clear, testable, and feasible.

E-8 DOE G 414.1-4A

 XX-XX-2015

3. The documented software requirements are controlled and maintained. Changes to the

software requirements are reflected in any and all documentation.

4. Each requirement is uniquely identified and defined such that it can be objectively

verified and validated.

Approach:

Review appropriate documents, such as documented safety analysis, safety analysis reports,

technical safety requirements, procurement specifications and any system documentation to

determine if the software requirements document is consistent with the system design. The

software requirements may exist either as a standalone document, such as a software

requirements specification, or may be embedded in other system or software documents.

 The assessment of the software identification process should include the following.

Verify that the software requirements address functionality, performance, security, design

inputs, design constraints, installation considerations, operating systems (if applicable),

and external interfaces necessary to design the software exist and are documented.

 If access to the system by only authorized users is a requirement, verify that use of

software is controlled so that only personnel on authorized user lists apply or maintain

safety software.

 Verify that the software requirements are correct, unambiguous, complete, consistent,

verifiable, modifiable and traceable as appropriate.

 Verify that acceptance criteria are established in the software requirements for each of the

identified requirements. Such criteria should be used for V&V planning and performance

as defined in each related life-cycle phase.

 Verify that the software requirement documents are controlled under the configuration

change control and document control processes.

 Verify that software requirement documents are reviewed and updated as necessary.

E.4.6 SOFTWARE DESIGN AND IMPLEMENTATION

Objective:

The software design depicting the logical structure, information flow, logical processing steps,

data structures and interfaces, is defined, documented and properly implemented.

Criteria:

1. The design, including interfaces and data structures, is correct, consistent, clearly

presented, and feasible.

2. The design is completely and appropriately implemented in the software.

3. The design requirements are traceable throughout the software life-cycle.

DOE G 414.1-4A XX-XX-20XX

 DRAFT

E-9

Approach:

Review the appropriate documents, including design documents, review records, and source code

listings. The design may be documented in a standalone document or embedded in other

documents.

The software design description should contain the following information:

 A description of the major components of the software design as they relate to the

software requirements, and any interactions with components.

 A technical description of the software with respect to control flow, control logic,

mathematical model, data structure and integrity, and interface.

 A description of inputs and outputs including allowable or prescribed ranges for inputs

and outputs.

 A description of error handling strategies and the use of interrupt protocols.

 The design described in a manner suitable for translating into computer codes.

 Evidence of reviews of the design and code for the appropriate grading exists. This may

overlap with the software V&V work activity.

 Evidence of developer testing including any independent testing for the appropriate

grading exists.

E.4.7 SOFTWARE SAFETY ANALYSIS AND SAFETY DESIGN METHODS

Objective

The design of the software components is developed in a manner that ensures the software

modules will perform their intended functions in a consistent manner under design basis

conditions.

Criteria:

1. Software systems are analyzed at the component level to ensure adequate safeguards are

implemented to eliminate or mitigate the potential occurrence of a software defect that

could cause a system failure.

2. Software is designed with simplicity and isolation of safety functions.

3. Where appropriate, fault tolerance and self-diagnostics are implemented in the software

design.

Approach:

 Review hazard analysis documents to ensure that software component and interface

failures are included. This analysis may be part of a software or system level failure

E-10 DOE G 414.1-4A

 XX-XX-2015

modes and effects analysis, fault-tree analysis, event-tree analysis or other similar

analyses.

 Review how the identified hazards are resolved. Various methods are used for hazards

resolutions, such as eliminations, reduction of exposure, and controlling or minimizing

the effects of a hazard.

 Confirm that the hazard analysis is periodically reassessed throughout the software

life-cycle and that changes are incorporated as appropriate.

 For high consequence safety software, sample software modules for proof of design

complexity evaluation and isolation of safety functions from non-safety functions.

 For high consequence safety software, where modules defects could impact the safe

operation of the system, evaluate the software design for the implementation of fault

tolerant and/or self-diagnostics techniques.

E.4.8 SOFTWARE VERIFICATION AND VALIDATION

Objective:

The V&V process (including acceptance testing) and related documentation for software are

defined and maintained to ensure that (1) the software correctly performs all its intended

functions; and that (2) the software does not perform any adverse unintended function.

Criteria:

1. Software deliverables have been verified, and validated for correct operation using

reviews, inspections, assessments, observation, and testing techniques.

2. Relevant abnormal conditions have been evaluated for mitigating unintended functions

through testing, observation, or inspection techniques.

3. Traceability of software requirements to software design and acceptance testing has been

performed.

4. New versions of the software are verified and validated to ensure that the software meets

the requirements and does not perform any unintended functions.

5. V&V activities are performed by competent staff other than those who developed the

item being verified or validated. This may overlap with the training work activity.

Approach:

Review appropriate documents, such as SQA plans, review plans, walkthrough records, peer

review records, desk check records, inspection reports, test plans, test cases, test reports, system

qualification plans and reports, and supplier qualification reports to determine whether:

 Management processes exist for performing V&V and management and independent

technical reviews;

DOE G 414.1-4A XX-XX-20XX

 DRAFT

E-11

 Reviews and inspections of the software requirement specifications, procurement

documents, software design, code modules, test results, training materials, and user

documentation have been performed by staff other than those who developed the item;

 Software design was performed prior to the software being used in operations;

 For design V&V:

o Results of the software V&V are documented and controlled;

o V&V methods include any one or a combination of design reviews, alternate

calculations, and tests performed during program development; and

o The extent of V&V methods chosen are a function of (1) the complexity of the

software; (2) the degree of standardization; (3) the similarity with previously proved

software; and (4) the importance to safety; and

 For test V&V:

o Documentation for development, factory or acceptance testing, installation, and

operations testing exists;

o Documentation includes test guidelines, test procedures, test cases including test data,

and expected results;

o Results documentation demonstrates successful completion of all test cases or the

resolution of unsuccessful test cases and proves direct traceability between the test

results and specified software design;

o Test V&V activities and their relationship with the software life-cycle are defined;

o Software requirements and system requirements are satisfied by the execution of

integration, system and acceptance testing;

o Acceptable methods for evaluating the software test case results include (1) analysis

without computer assistance, (2) other validated computer programs, (3) experiments

and test, (4) standard problems with known solutions, and (5) confirmed published

data and correlations;

o Traceability exists from software requirements to design and testing, and if

appropriate, to user documentation; and

o Hardware and software configurations pertaining to the test V&V are specified.

E.4.9 PROBLEM REPORTING AND CORRECTIVE ACTION

Objective:

Formal procedures for software problem reporting and corrective actions for software errors and

failures are established, maintained, and controlled.

E-12 DOE G 414.1-4A

 XX-XX-2015

Criteria:

1. Documented practices and procedures for reporting, tracking, and resolving problems or

issues are defined and implemented.

2. An evaluation process exists for determining if the reported problem is a software defect,

error, or something else.

3. Organizational responsibilities for reporting issues, approving changes, and implementing

corrective actions are identified and found to be effective.

4. For software defects and errors, the defect or error is correlated with the appropriate

software engineering elements, identified for potential impact, and all users are notified.

5. For acquired software, procurement documents identify the requirements to both the

supplier and purchaser to report problems to each other.

Approach:

Review documents and interview facility staff for the problem reporting and notification process

to determine whether

 A formal procedure exists for software problem reporting and corrective action

development that addresses software errors, failures, and resolutions;

 Problems that impact the operation of the software are promptly reported to affected

organizations;

 Corrections and changes are evaluated for impact and approved prior to being

implemented;

 Corrections and changes are verified for correct operation and to ensure that no side

effects were introduced;

 Preventive measures and corrective actions are provided to affected organizations in a

timely manner; and

 The organizations responsible for problem reporting and resolution are clearly defined.

E.4.10 TRAINING OF PERSONNEL IN THE DESIGN, DEVELOPMENT, USE, AND

EVALUATION OF SOFTWARE

Objective:

Personnel are trained/qualified and capable of performing assigned work. Continuing training to

personnel is provided to maintain job proficiency.

Criteria:

1. A training or indoctrination program exists for each of the following:

DOE G 414.1-4A XX-XX-20XX

 DRAFT

E-13

 Software analysis;

 Software development (concept to retirement);

 Operations and use; and

 Assessment or evaluation of software.

2. The training/indoctrination provides for continuing education and training to improve

performance and proficiency.

3. Training/indoctrination is commensurate with the scope, complexity, and importance of

the tasks and the education, experience, and proficiency of the person.

Approach:

 Review training records or other documentation and conduct interviews to confirm a

training or indoctrination program exists for each of the personnel assignments listed

above.

 Verify the training program provides for continuing education.

 Verify the training program is adequate and appropriate for the scope, complexity, and

importance of the task being performed.

DOE G 414.1-4A XX-XX-20XX

 DRAFT

F-1

APPENDIX F. ACRONYMS AND DEFINITIONS

F.1 ACRONYMS

ACE abnormal conditions and events

ANS American Nuclear Society

ANSI American National Standards Institute

ASIC application specific integrated circuits

ASME American Society of Mechanical Engineers

ASQ American Society for Quality

CAD computer aided design

CCFD Critical Characteristics for Design

CFR Code of Federal Regulations

CGD Commercial Grade Dedication

CMMI Capability Maturity Model Integration

CNSSI Committee on National Security Systems Instruction

COTS commercial off-the-shelf

CRAD criteria review and approach document

CS critical software

DEAR Department of Energy Acquisition Regulation

DID Defense in Depth

DNFSB Defense Nuclear Facilities Safety Board

DOE G U.S. Department of Energy Guide

DOE O U.S. Department of Energy Order

DOE P U.S. Department of Energy Policy

DOE U.S. Department of Energy

DSA documented safety analysis

EDD embedded digital device

EPRI Electric Power Research Institute

FIPS Federal Information Processing Standard

FMEA failure modes and effects analysis

GB guide book

GS general software

I&C instrumentation and control

IAEA International Atomic Energy Agency

F-2 DOE G 414.1-4A

 XX-XX-2015

ICS Industrial Control Systems

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISMS Integrated Safety Management System

ISA International Society of Automation

ISO International Organization for Standardization

NASA National Aeronautics and Space Administration

NIST National Institute of Standards and Technology

NNSA National Nuclear Security Administration

NPH natural phenomena hazard

NRC Nuclear Regulatory Commission

OSW other software

PLC programmable logic controller

PLD programmable logic devices

QA quality assurance

QAP quality assurance program

RTM requirements traceability matrix

SAC specific administrative control

SAE Society of Automotive Engineers

SAS Safety-affecting software

SC safety class

SCAPA Consequence Assessment and Protective Actions

S/CI Suspect/Counterfeit item

SCM software configuration management

SDD software design description

SDP software development plan

SDS software design description

SEI Software Engineering Institute

SG safety guide

SHADS safety and hazard analysis and design software

SMACS safety management and administrative controls software

SME subject matter expert

SPMP software project management plan

SQA software quality assurance

DOE G 414.1-4A XX-XX-20XX

 DRAFT

F-3

SQAP software quality assurance plan

SQASG Software Quality Assurance Support Group

SRS software requirement specification

SS safety significant

SSC structure, system, and component

SSCM secure software configuration management

SSQA safety software quality assurance

SSS safety system software

SW-CMM Software Capability Maturity Model

TR technical report

TSR technical safety requirement

V&V Verification and Validation

F.2 DEFINITIONS

The following definitions are included with this Guide for convenience and clarification.

DOE O 414.1D definitions shall take precedence over those included in this Appendix.

Acceptance Testing. The process of exercising or evaluating a system or system component by

manual or automated means to ensure that it satisfies the specified requirements and to identify

differences between expected and actual results in the operating environment. Source: ASME

NQA-1-2008/NQA-1a-2009.

Administrative Controls. The provisions relating to organization and management, procedures,

record keeping, assessment, and reporting necessary to ensure safe operation of a facility.

Source: 10 CFR Part 830.

Assessment. A review, evaluation, inspection, test, check, surveillance, or audit, to determine

and document whether items, processes, systems, or services meet specified requirements and

perform effectively. Source: DOE O 414.1D.

Baseline. A specification or product that has been formally reviewed and agreed upon, that

thereafter serves as the basis for use and further development, and that can be changed only by

using an approved change control process. Source: ASME-NQA-1-2008/NQA-1a-2009.

Configuration Management. The process of identifying and defining the configuration items

in a system (i.e., software and hardware), controlling the release and change of these items

throughout the system’s life cycle, and recording and reporting the status of configuration items

and change requests. Source: ASME NQA-1-2008/NQA-1a-2009.

F-4 DOE G 414.1-4A

 XX-XX-2015

Configuration Item. A collection of hardware or software elements treated as a unit for the

purpose of configuration control. Source: IEEE Std 610.12-1990.

Consequence. An outcome of an event, hazard, threat, or situation. Source: IEEE

Std 1540-2001.

Critical Characteristics. Important design, material, and performance characteristics of a

commercial grade item or service that, once verified, will provide reasonable assurance that the

item or service will perform its intended safety function. Source: ASME NQA-1a-2009,

Subpart 2.14.

Design Authority. The engineer designated by the Acquisition Executive to be responsible for

establishing the design requirements and ensuring that design output documentation

appropriately and accurately reflect the design basis. The Design Authority is responsible for

design control and ultimate technical adequacy of the design process. These responsibilities are

applicable whether the process is conducted fully in-house, partially contracted to outside

organizations, or fully contracted to outside organizations. The Design Authority may delegate

design work [authorities] but not its responsibilities. Source: DOE O 413.3B.

Error. A condition deviating from an established baseline, including deviations from the current

approved computer program and its baseline requirements. Source: ASME-NQA-1-2008/NQA-

1a-2009.

Firmware. The combination of a hardware device, computer programs, and data that resides as

read-only software on that device. Firmware is sometimes referred to as embedded software.

Functional Configuration Audit. An audit conducted to verify that the development of a

configuration item has been completed satisfactorily, that the item has achieved the performance

and functional characteristics specified in the functional or allocated configuration identification,

and that its operational and support documents are complete and satisfactory. Source: IEEE Std

610.12 1990.

Graded Approach. The process of ensuring that the level of analyses, documentation, and

actions used to comply with requirements are commensurate with:

 the relative importance to safety, safeguards, and security;

 the magnitude of any hazard involved;

 the life-cycle stage of a facility or item;

 the programmatic mission of a facility;

 the particular characteristics of a facility or item;

DOE G 414.1-4A XX-XX-20XX

 DRAFT

F-5

 the relative importance to radiological and nonradiological hazards; and

 any other relevant factors.

Source: 10 CFR Part 830.

Hazard Controls. Measures to eliminate, limit, or mitigate hazards to workers, the public, or

the environment, including:

 physical, design, structural, and engineering features;

 safety structures, systems and components;

 safety management programs;

 Technical Safety Requirements; and

 other controls necessary to provide adequate protection from hazards.

Source: 10 CFR Part 830.

Item. An all-inclusive term used in place of appurtenance, assembly, component, equipment,

material, module, part, structure, product, subassembly, subsystem, system, unit, or support

systems. Source: 10 CFR Part 830.

Nuclear Facility. A reactor or a nonreactor nuclear facility where an activity is conducted for or

on behalf of DOE and includes any related area, structure, facility, or activity to the extent

necessary to ensure proper implementation of the requirements established in CFR, part 10,

section Part 830. Source: 10 CFR Part 830.

Physical Configuration Audit. An audit conducted to verify that a configuration item, as built,

conforms to the technical documentation that defines it. Source: IEEE Std 610.12-1990.

Process. A series of actions that achieves an end result. Source: 10 CFR Part 830.

Quality. The condition achieved when an item, service, or process meets or exceeds the user’s

requirements and expectations. Source: 10 CFR Part 830.

Quality Assurance. All those actions that provide confidence that quality is achieved. Source:

10 CFR Part 830.

Quality Assurance Program. The overall program or management system established to assign

responsibilities and authorities, define policies and requirements, and provide for the

performance and assessment of work. Source: 10 CFR Part 830.

Risk. The likelihood of an event, hazard, threat, or situation occurring and its undesirable

consequences; a potential problem. Source: IEEE Std 1540-2001.

F-6 DOE G 414.1-4A

 XX-XX-2015

Safety. An all-inclusive term used synonymously with environment, safety, and health to

encompass protection of the public, the workers, and the environment. Source: DOE O 414.1C.

Safety-class structures, systems, and components (SC SSCs). Structures, systems, or

components, including portions of process systems, whose preventive and mitigative function is

necessary to limit radioactive hazardous material exposure to the public, as determined from the

safety analyses. Source: 10 CFR Part 830.

Safety-significant structures, systems, and components (SS SSCs). Structures, systems, and

components which are not designated as safety-class SSCs, but whose preventive or mitigative

function is a major contributor to defense in depth and/or worker safety as determined from

safety analyses [10 CFR Part 830].

Safety Management Program. A program designed to ensure a facility is operated in a manner

that adequately protects workers, the public, and the environment by covering a topic such as:

quality assurance; maintenance of safety systems; personnel training; conduct of operations;

inadvertent criticality protection; emergency preparedness; fire protection; waste management;

or radiological protection of workers, the public, and the environment. Source: 10 CFR Part 830.

Safety Software. Includes the following: Source: DOE O 414.1D

Safety System Software. Software for a nuclear facility that performs a safety function

as part of an SSC and is cited in either (a) a DOE-approved documented safety analysis;

or, (b) an approved hazard analysis per DOE P 450.4, Safety Management System Policy,

dated 10-15-96 (or latest version) and 48 CFR 970-5223.1.

Safety and Hazard Analysis Software and Design Software. Software that is used to

classify, design, or analyze nuclear facilities. This software is not part of an SSC but

helps to ensure the proper accident or hazards analysis of nuclear facilities or an SSC that

performs a safety function.

Safety Management and Administrative Controls Software. Software that performs a

hazard control function in support of nuclear facility or radiological safety management

programs or technical safety requirements or other software that performs a control

function necessary to provide adequate protection from nuclear facility or radiological

hazards. This software supports eliminating, limiting, or mitigating nuclear hazards to

workers, the public, or the environment as addressed in 10 C.F.R. Parts Part 830 and 835,

the DEAR Integrated Safety Management System clause, and 48 CFR 970-5223.1.

DOE G 414.1-4A XX-XX-20XX

 DRAFT

F-7

Safety Structures, Systems, and Components. Both safety class structures, systems, and

components and safety significant structures, systems, and components. Source: 10 CFR Part

830.

Service. Work, such as design, construction, fabrication, decontamination, environmental

remediation, waste management, laboratory sample analysis, safety software development/

validation/testing, inspection, nondestructive examination/testing, environmental qualification,

equipment qualification, training, assessment, repair, and installation or the like. Source:

10 CFR Part 830.

Software. Computer programs and associated documentation and data pertaining to the

operation of a computer system. Source: ASME-NQA-1-2008/NQA-1a-2009.

Software Life-cycle. The activities that comprise the evolution of software from conception to

retirement. The software life cycle typically includes the software development cycle and the

activities associated with operation, maintenance, and retirement. Source: ASME-NQA-1-

2008/NQA-1a-2009.

Technical Safety Requirements. The limits, controls, and related actions that establish the

specific parameters and requisite actions for the safe operation of a nuclear facility and include,

as appropriate for the work and the hazards identified in the documents safety analysis for the

facility: safety limits, operating limits, surveillance requirements, administrative and

management controls, use and application provisions, and design features, as well as a bases

appendix. Source: 10 CFR Part 830.

Validation. The process of: (a) evaluating a system or component during, or at the end of the

development process to determine whether it satisfies specified requirements; or, (b) providing

evidence that the software, and its associated products, satisfies system requirements allocated to

software at the end of each life-cycle activity, solves the right problem (e.g., correctly models

physical laws, implements business rules, uses the proper system assumptions), and satisfies the

intended use and user needs. Source: DOE O 414.1D.

Verification. The process of: (a) evaluating a system or component to determine whether the

products of a given development phase satisfy the conditions imposed at the start of that phase;

or, (b) providing objective evidence that the software and its associated products conforms to

requirements (e.g., for correctness, completeness, consistency, accuracy) for all life-cycle

activities during each life-cycle process (acquisition, supply, development, operation, and

maintenance); satisfies standards, practices, and conventions during life-cycle processes; and,

successfully completes each life-cycle activity and satisfies all the criteria for initiating

succeeding life-cycle activities (e.g., building the software correctly). Source: DOE O 414.1D.

F-8 DOE G 414.1-4A

 XX-XX-2015

Work. A defined task or activity; such as: research and development; operations; environmental

remediation; maintenance and repair; administration; software (including safety software)

development, validation, testing, and use; inspection; safeguards and security; or data collection

and analysis. Source: DOE O 414.1D.

DOE G 414.1-4A XX-XX-20XX

 DRAFT

G-1

APPENDIX G. REFERENCES

The following referenced documents were used in developing the information contained in this

Guide. Some of these documents, such as Department of Energy (DOE) Orders and the

10 CFR Part 830, Part A, Quality Assurance, may be obtained through the online DOE

Directives, Regulations, and Standards website: http://www.directives.doe.gov. Other

documents, such as the American Society of Mechanical Engineers (ASME), American Society

for Quality (ASQ), and International Electrotechnical Commission (IEC) standards and guidance

documents may be purchased or obtained from the sponsoring organizations.

1. 10 CFR Part 830, Nuclear Safety Management.

2. DEAR 48 CFR §970.5223-1, Integration of environment, safety, and health into work

planning and execution.

3. American National Standards Institute (ANSI)/American Nuclear Society (ANS)

10.4-1987 (R1998), Guidelines for the Verification and Validation of Scientific and

Engineering Computer Programs for the Nuclear Industry, American Nuclear Society,

1998.

4. ANSI/ANS 10.7-2013, Non-Real-Time, High-Integrity Software for the Nuclear

Industry—Developer Requirements, ANSI/ANS, March 2013.

5. ANSI/International Society of Automation (ISA) 84.00-01, Functional Safety: Safety

Instrumented Systems for the Process Industry Sector (2004).

6. American Society of Mechanical Engineers (ASME) NQA-1-2008/NQA-1a-2009,

Quality Assurance Program for Nuclear Facilities.

7. ASME NQA-1-2008/2009A Part II, Subpart 2.7, Quality Assurance Requirements for

Computer Software for Nuclear Facility Applications.

8. ASME NQA-1a-2009, Part II, Subpart 2.14, Quality Assurance Requirements for

Commercial Grade Items and Services.

9. ASME NQA-1-2012 Part 3.2-2.14, Implementing Guidance for Part II, Requirement

2.14: Quality Assurance Requirements for Commercial Grade Items and Services,

Commercial Grade Computer Programs, and Software Services.

10. ATEC, Test and Evaluation, Modeling and Simulation Verification, Validation, and

Accreditation Methodology, Pamphlet 73-21, Department of the Army, Army Test and

Evaluation Command, Alexandria, VA, April 2007.

11. Capability Maturity Model Integration (CMMI) Product Team, Capability Maturity

Model Integration, Version 1.1, CMMI for Systems Engineering, Software Engineering,

Integrated Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1),

http://www.directives.doe.gov/

G-2 DOE G 414.1-4A

 XX-XX-2015

Continuous Representation, CMU/SEI-2002-TR-011, ESC-TR-2002-011, Carnegie

Mellon University (CMU) Software Engineering Institute (SEI), 2002.

12. Chew, Jennifer, and Cindy Sullivan, Verification, Validation, and Accreditation in the

Life Cycle of Models and Simulations, Proceedings of the 2000 Winter Simulation

Conference, ed. J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, Orlando, FL,

December, 2000, http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7220.

13. Christensen, Mark J., and Richard H. Thayer, The Project Manager’s Guide to Software

Engineering’s Best Practices, Institute of Electrical and Electronics Engineers, Computer

Society Press, 2001.

14. Committee on National Security Systems Instruction (CNSSI) No. 1253 “Security

Categorization and Control Selection for National Security Systems,” March 27, 2014.

15. DA, Verification, Validation, and Accreditation of Army Models and Simulations,

Pamphlet 5-11, Department of the Army, Washington, DC, September 1999.

16. Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1, Quality

Assurance for Safety-Related Software, Defense Nuclear Facilities Safety Board,

September 2002.

17. DOE O 200.1A, Information Technology Management, dated 12-23-2008

18. DOE O 205.1B, DOE Cyber Security Program.

19. DOE O 414.1D, Quality Assurance, dated 4-25-2011. (Change Notice No. 1, dated May

2013).

20. DOE P 450.4A, Integrated Safety Management Policy.

21. DOE, EM Quality Assurance Program, EM-QA-001, Rev. 1, Office of Environmental

Management, June 2012.

22. DOE Office of Environmental Management, Guidance for Commercial Grade

Dedication, April 2011.

23. DOE Office of Health, Safety and Security Safety Advisory for Software Quality

Assurance, October 2010 Advisory No. 2010-08: Firmware Defect in Programmable

Logic Controller.DOE-STD-1027-92, Hazard Categorization and Accident Analysis

Techniques For Compliance With DOE Order 5480.23, Nuclear Safety Analysis Reports,

December 1992 (Change Notice No. 1, dated September 1997).

24. DOE-STD-1195, Design of Safety Significant Safety Instrumented Systems Used at a

DOE Nonreactor Nuclear Facilities.

25. DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety

Analysis, November 2014.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7220

DOE G 414.1-4A XX-XX-20XX

 DRAFT

G-3

26. DOE Subcommittee on Consensus Assessment and Protective Actions Special Interest

Group (SCAPA), SQA Guidance, July 30, 2010.

27. EPA, Guidance on the Development, Evaluation, and Application of Environmental

Models, EPA/100/K-09/003, Environmental Protection Agency, March 2009.

28. EPRI TR 1025243 Plant Engineering: Guideline for the Acceptance of Commercial-

Grade Design and Analysis Computer Programs Used in Nuclear Safety-Related

Applications.

29. ERPI TR-106439 Plant Engineering: Guideline on Evaluation and Acceptance of

Commercial Grade Digital Equipment for Nuclear Safety Applications.

30. International Atomic Energy Agency (IAEA) Safety Guide (SG) Series No. NS-G-1.1,

Software for Computer Based Systems Important to Safety in Nuclear Power Plants,

IAEA, 2000.

31. IAEA Safety Series No. 50-C/SG-Q, Quality Assurance for Safety in Nuclear Power

Plants and other Nuclear Installations, Code and Safety Guides Q1–Q14, IAEA, 1996.

32. IAEA Technical Reports Series No. 397, Quality Assurance for Software Important to

Safety, IAEA, 2000.

33. Identifying software failures using FMEA and fault tree analysis, ASQ Quality Progress,

September 2012.

34. IEC 61508 Parts 1–7, Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-Related Systems, IEC, 1998.

35. IEC 61511 Parts 1–3, Functional Safety—Safety Instrumented Systems for the Process

Industry Sector, IEC, 2003.

36. IEEE/ISO/IEC 16326-2009, Systems and Software Engineering--Life Cycle Processes--

Project Management.

37. IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology,

IEEE, 1990.

38. IEEE Std 730-2002, Standard for Software Quality Assurance Plans, IEEE, 2002.

39. IEEE Std 828-1998, IEEE Standard for Software Configuration Management Plans,

IEEE, 1998.

40. IEEE Std 1012-1998, IEEE Standard for Software Verification and Validation, IEEE,

1998.

41. IEEE Std 1012a-1998, IEEE Standard for Software Verification and Validation—

Supplement to 1012, IEEE, 1998.

G-4 DOE G 414.1-4A

 XX-XX-2015

42. IEEE Std 1016-1987, IEEE Recommended Practice for Software Design Descriptions,

1987.

43. IEEE Std 1042-1987, IEEE Guide to Software Configuration Management, Section 3.3.4,

“Audits and Reviews,” IEEE, 1987.

44. IEEE Std 1228-1994, IEEE Standard for Software Safety Plans, IEEE, 1994.

45. IEEE Std 7-4.3.2-2003, IEEE Standard Criteria for Digital Computers in Safety Systems

of Nuclear Power Generating Stations, IEEE, 2003.

46. IEEE Std 730-2002, IEEE Std 730-2014, IEEE Standard for Software Quality Assurance

Processes, 2014.

47. IEEE Std 1540-2001, IEEE Standard for Software Life Cycle Processes - Risk

Management, IEEE, 2001.

48. IEEE-Std-24765, Systems and Software Engineering Vocabulary,

49. IP 2002-1, Implementation Plan for Defense Nuclear Facilities Safety Board

Recommendation 2002-1, Quality Assurance for Safety-Related Software at Department

of Energy Defense Nuclear Facilities, dated 3-13-03.

50. ISO 9001-2008, Quality Management Systems—Requirements, ISO, 2008.

51. ISO/IEEE Standard 16085, IEEE Standard for Software Engineering: Software Life

Cycle Processes, Risk Management, IEEE, 2004.

52. Leveson, Nancy, Safeware: System Safety and Computers, Addison Wesley, 1995.

53. M&SCO (2006), VV&A Recommended Practices Guide, Modeling and Simulation

Coordination Office (M&S CO), VV&A Recommended Practices Guide, September

2006. (http://msco.mil/VVA_RPG.html)

54. National Aeronautics and Space Administration (NASA) NASA-STD- NASA-STD-

8739.8, Software Assurance Standard, NASA, 2004.

55. NASA-GB-8719.13 NASA Software Safety Guidebook, NASA, 2004

56. NASA-STD-13B Software Safety Standard, NASA, 2004.National Aeronautics and

Space Administration (NASA)

57. National Research Council, Models in Environmental Regulatory Decision Making,

National Research Council, Washington D.C., 2007.

58. NIST 800-37, “Guide for Applying the Risk Management Framework to Federal

Information Systems.”

59. NIST 800-53 Revision 4 “Security and Privacy Controls for Federal Information Systems

and Organizations.”

DOE G 414.1-4A XX-XX-20XX

 DRAFT

G-5

60. NIST, Reference Information for the Software Verification and Validation Process, NIST

Special Publication 500-234, National Institute of Standards and Technology,

Gaithersburg, MD, March 1996.

61. NRC Information Notice No. 94-20: Common-cause Failures due to Inadequate Design

Control and Dedication.

62. Overcamp, William L. and Timothy G. Trucano, Verification and Validation in

Computational Fluid Dynamics, SAND2002-0529, Sandia National Laboratories, March

2002.

63. Roach, Patrick J., Verification and Validation in Computational Science and

Engineering, Hermosa Publishers, Albuquerque, NM, 1998.

64. Sargent, R. G., Verification and Validation of Simulation Models, In Proc. 2011 Winter

Simulation Conf., ed. S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu,

Piscataway, New Jersey: Institute of Electrical and Electronic Engineers Inc., 2011.

65. Society of Automotive Engineers (SAE), SAE JA1003, Software Reliability Program

Implementation Guide, SAE, 2004.

66. Sparkman, Debra, Techniques, Processes, and Measures for Software Safety and

Reliability, Lawrence Livermore National Laboratory, UCRL-ID 108725, 1992.

67. SQAS21.01.00-1999 (Reference Document), Software Risk Management: A Practical

Guide, Department of Energy Quality Managers Software Quality Assurance

Subcommittee, February 2000.

68. SQASG TP-07-01 Rev 2, DOE Safety Software Examples.

69. SQASG-TP-10-01-REV. 1, A Systematic Approach to Implementing the Quality

Requirements of DOE O 414.1D for Software.

70. SQASG-TP-14-01 REV. 0, DOE Nuclear Safety Software Graded Approach Assessment

Tool.

71. Thacker, B. H., S. W. Doebling, F. M. Hemez, M. C. Anderson, J. E. Pepin, and E. A.

Rodriguez, Concepts of Model Verification and Validation, LA-14167-MS, Los Alamos

National Laboratory, October 2004.

72. U.S. Nuclear Regulatory Commission 10 CFR §73.54, “Protection of digital computer

and communication systems and networks.”

73. U.S. Nuclear Regulatory Commission, Regulatory Guide 5.71, “Cyber Security Programs

for Nuclear Facilities,” January 2010.

